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ABSTRACT 

The notion that a good decision strategy is a flexible one has 

long been intuitively appreciated by decision makers. Decision analy- 

sis, however, has had little to say on the subject of flexibility. 

The purpose of this thesis is to place the flexibility concept within 

the decision analysis framework. 

The analysis begins with an application of decision theory tech- 

niques to the problem of choosing between flexible and inflexible deci- 

sion strategies. A precise mathematical definition of decision flex- 

ibility is proposed wherein the relative flexibility of a decision is 

measured by the size of the decision choice set. Further application 

of the theory of decision analysis provides a measure of the value of 

flexibility. 

A strong complementarity between information and flexibility is 

observed. The more information is expected during the execution of a 

plan, the more valuable is flexibility. Conversely, the more flexi- 

bility one has, the greater the value of information gathering. The 

concepts of the value of information and the value of flexibility are 

seen to be inseparable. We define a more fundamental concept of the 

value of information given flexibility and point out the applications 

of the concept to decision making. 

The value of information given flexibility is analyzed for deci- 

sion problems with quadratic value functions. The restriction to this 

class allows us to isolate the impact of two characteristics that in 

a large part determine the economic impact of information and flexi- 

bility. These are (1) the extent of correlation among the state and 

information variables and (2) the amount of interaction among the 

decision variables. 

A portion of the thesis is devotee to a study of the effects 

of the information and flexibility quantization necessary for a deci- 

sion tree representation of a sequential decision problem. The anal- 

ysis indicates that even a very rough system of quantization tends 
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to   introduce only small   losses  into the optimal   solution of a 

sequential  decision problem.     Thus,   support  is given to the method 

of  solution of sequential  problems by decision trees. 

Finally, methods are presented  for simplifying the calculation 

of the value of  information given  flexibility through the use of 

sensitivity analysis. 
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INTRODUCTION AND SUMMARY OF RESULTS 

In the course of the scientific development of the theory of 

decision-making, it often has been the case that substantial improve- 

ments in understanding have resulted from the mathematical refinement 

of common terms. Words such as "uncertainty," "risk," and "information" 

have everyday meanings that fail to distinguish adequately a problem's 

characteristics. Consequently for the purposes of economic analysis, 

their definitions have been narrowed, or they have been replaced by new 

terms whose meanings are more precise. 

The objective of this thesis is to present a mathematically pre- 

cise definition of the term "flexibility" appropriate to the discipline 

of decision analysis. We believe that an important measure of the ap- 

propriateness of a definition should be the worth of the insights 

generated from its use. Consequently, a major portion of our work is 

an exploration for useful results that may be derived from the applica- 

tion of our definition. 

Chapter 1 

Chapter 1 presents our definition of decision flexibility.  We view 

the flexibility of a given decision variable to be determined by the 

size of the choice set associated with that variable. Roughly speaking, 

the larger the choice set--that is, the more alternatives that are 

available for a decision--the greater is the decision flexibility. 

Since flexibility is a property of the choice set for a variable 

rather than a property of the variable itself, the degree of flexibil- 

ity possessed by each decision will change during the decision process. 

The actions taken early in a decision process often affect the number 

of alternatives available later on. The action to acquire a choice set 

is a decision that produces flexibility on another variable.  Thus, 

the decision to keep a large amount of cash in your checking account is 

not, by our definition, necessarily a flexible decision.  Rather, it is 

this decision that increases our subsequent flexibility for the deci- 

sion of what we purchase by check. On the other hand, the irreversible 

commitment of a decision variable to a specific alternative eliminates 

         .-..-. .    .     ... . . - —^^^^^,  
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I 

the flexibility associated with that variable.  Prior to zeroing out 

one's checking account, the decision to buy either a set of golf clubs 

or a new dishwasher is still flexible.  However, the minute we hand 

over the check in the sporting goods store that decision becomes in- 

flexible . 

Chapter 2 

Chapter 2 is concerned with placing an economic value on maintain- 

ing a given amount of decision flexibility.  The value of flexibility, 

however, is strongly dependent upon the information that might be re- 

ceived during the decision process.  The more a decision maker expects 

to learn in the course of a decision, the more it pays to follow flex- 

ible decision strategies.  Conversely, the more flexible one's decision 

strategy, the greater the value of information-gathering.  Thus, the 

concepts of value of information and value of flexibility become spe- 

cial cases of the more general concept of the value of information 

given flexibility. 

The value of information given flexibility measures the value to 

the decision maker, in economic units, of obtaining a given amount of 

information together with a given amount of decision flexibility.  An 

upper limit to this quantity, the expected valui jf perfect information 

given perfect flexibility (EVPIGPF), may be calculated.  The method 

deviates only slightly from the standard decision theory calculation of 

the expected value of perfect information (EVPI). 

The EVPIGPF is similar to, but more complete than, the concept of 

EVPI.  Whereas EVPI measures the value of perfect information under the 

assumption that all decision variables may be adjusted to utilize the 

information, the EVPIGPF explicitly states which decision variables may 

be adjusted in response to what information.  In a real system it may 

be costly or impossible to maintain flexibility on all decisions while 

awaiting the arrival of some piece of information.  By comparing the 

costs of maintaining flexibility with the EVPIGPF, the decision maker 

has a method for deciding which decisions ought to be kept flexible and 

on which it is more profitable to eliminate flexibility. 

-2- 
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Chapter 3 

Chapter  3 calculates   the EVPIGPF  for a particular class  of decision 

problems   that we call quadratic.    Quadratic  decisions may be  thought of 

as  approximations  to a much broader  class  of problems  characterized by 

decision and  uncertain outcome  variables   that may  take  on a continuum 

of values.     The exploration  identifies   the  influence  of a number of 

problem parameters on  the value of obtaining  information with decision 

flexibility.     One of  these parameters   is   the degree of  interaction 

among   the problem decision variables.     Specifically,   if    v    represents 

the  value of a particular outcome  of a decision,   the degree of interac- 

tion  between a decision variable    d.     and a decision variable    d       is 
2 J measured  by  the  second partial  derivative     n v/hd.^d.   .     This  deriva- 

tive  gives   the degree   to which a change   in decision  variable    d       in- 
J 

fluences   the effect of a  change  in  decision variable     d.     on outcome 

value. 

An interesting result of Chapter 3 states that to a first order 

approximation the value of obtaining information on one uncertain quan- 

tity plus the value of obtaining information on another uncertain quan- 

tity will equal the value of obtaining information on both quantities 

simultaneously, only provided that the information is uncorrelated; 

that is, provided that learning one quantity does not help us in learn- 

ing the other.  Similarly, the value of obtaining flexibility on one 

decision plus the value of obtaining flexibility on another decision 

will, to a first approximation, equal the value of obtaining flexibil- 

ity jointly, only provided that the two decisions do not interact. 

Chapter 4 

One of the most common methods for analyzing decision problems is 

the decision tree.  In a decision tree information and flexibility are 

represented as quantized or discretized approximations by branches ema- 

nating from nodes in a tree-like structure. Chapter 4 is concerned 

with the effect of such quantization on the value of information given 

flexibility. A method is presented for determining the precise econo- 

mic loss to be expected from using a quantized rather than an exact in- 

formation reporting system.  In addition, the possibility of designing 

optimal quantizing systems is demonstrated. 

-3- 
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Once again, an analysis is conducted on the special class of qua- 

dratic problems.  For the two-variable quadratic problem, which contains 

a single decision and a single uncertain outcome, the expected economic 

loss from information quantization or flexibility discretization is in- 

vestigated for several different probability distributions describing 

the uncertain outcome.  Expected loss is found to be relatively insen- 

sitive to the particular quantizing or discretizing system chosen. 

Invariably, the expected economic loss falls quickly with the number of 

quantizing or discretizing levels employed:  roughly 60% of the value 

of information or 607<. of the value of flexibility may be obtained using 

only two levels, and 80% of the value may be expected using three lev- 

els.  The implication is that information and flexibility are well rep- 

resented in a decision tree by as few as three branches from respective 

state or decision nodes. 

Chapter 5 

Chapter 5 incorporates the flexibility concept into a useful tech- 

nique for decision model design and analysis called "sensitivity analy- 

sis." One form of sensitivity analysis is proximal analysis. Proximal 

analysis assumes that the decision problem is approximately quadratic. 

Thus, the thesis results concerning the quadratic decision problem are 

directly applicable here. The main results of Chapter 5 provide tech- 

niques for more easily estimating the EVPIGPF under the assumptions of 

the proximal model. 
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CHAPTER 1 

THE CONCEPT OF FLEXIBILITY 

Nearly everyone is familiar with the story of a plan that went 

wrong because it failed to adjust for some unforeseen circumstance. 

We might say that such a plan lacked flexibility, that a good decision 

strategy is a flexible one.  However, what exactly do we mean by deci- 

sion flexibility? 

1.1 LITERATURE 

If one turns to micro-economic literature on the theory of the 

firm, one will uncover a number of definitions for decision flexibility. 

For most authors flexibility is, roughly speaking, a property of a de- 

cision which makes it easily altered.  Hart [6] and Theil [14] define 

flexible decision rules as dynamic, inflexible decision rules as sta- 

tic.  From their point of view if a production plant is flexible, it 

is possible to diverge from planned values at a date subsequent to their 

acceptance.  Hence, flexibility refers to the ability to modify plans 

over time.  Marschak and Nelson [10] are more specific.  For them flex- 

ibility is a property of an initial decision which makes subsequent ac- 

tions less costly or preserves more choices.  Stigler [13] and Baumöl 

[1] refer to flexibility in the. context of static decision-making; 

for them it means the rate of change of marginal cost.  The smaller a 

plant's second derivative of total cost, the more flexibility it has. 

Tisdell [15] illustrates the importance of distinguishing among  the 

various definitions of flexibility by demonstrating that they may have 

conflicting consequences for decision-making. 

In each case the meanings authors have ascribed to the term flex- 

ibility have been appropriate only within the relatively narrow con- 

texts of their particular problems.  The objec'.ive of Chapter 1 is to 

present a mathematically precise definition which is applicable to a 

much broader class of problems. 

1.2 DECISION ANALYSIS 

For our definition and subsequent exploration of flexibility we 

shall rely upon the theory of decision analysis [7,9].  Decision 
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analysis is a practical discipline combining the techniques of decision 

theory with the mathematical, me :hods of systems analysis.  Decision 

theory is a logical means for formulating decision strategies under un- 

certainty. 

We define a decision action to be a commitment of scarce resources 

that is irrevocable in the sense that it cannot be subsequently altered 

without incurring a nontrivial penalty. A decision strategy is defined 

a« a deliberate selection of a specific decision action fro.n the set of 

alternative actions. If this choice of action is made without knowing 

the precise consequences ot selecting at least one of the alternative 

actions, we face a decision under uncertainty. 

Both the techniques of decision theory and the concept of fl xibil- 

ity will be made clearer by the analysis of an example. 

Example:  The Sofa Sale 

A yourg housewife named Linda thought she had found the perfect 

sofa for the apartment, and at one-half the usual price.  "Now if 

only Jim likes it," she thought, and she couldn't wait to show it to her 

husband.  "I'm sorry lady," apologized the salesman, "that model has 

been selling like hotcakes.  We've only got one left.  I can't hold it 

'til Saturday for you without a $25 deposit, sto  rules." "What should 

I do?" Linda thought.  "I'm almost sure Jim will like it, but I cer- 

tainly can't buy a sofa without his seeing it first." Just as she was 

pondering her situation she overheard an excited conversation between 

two elderly women, "Oh, look at that lovely sofa.' Wouldn't that be 

just perfect for our den?" "Why yes, Martha, I believe you're right.'" 

The only way that Linda can retain flexibility on her decision 

whether or not to buy the sofa is to make the $25 deposit. Let's ima- 

gine that she decides to analyze the problem using some techniques of 

decision analysis.  She observes that there are three possible outcomes 

to her problem.  If she makes the deposit, she and her husband could 

decide (a) to purchase the sofa, or (b) not to purchase it.  If she 

does not make the deposit, she reasons, it will certainly b3 sold be- 

fore Saturday. Let us assume that Linda is able to rank preferen- 

tially these three possible outcomes and express this ranking in a 
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This completes the necessary specification in the problem.  The 

decision maker has specified the alternative actions and uncontrol- 

lable states in a mutually exclusive and exhaustive fashion.  Subjec- 

tive probabilities have been assigned to state occurrences, and each 

conceivable outcome--that is, each possible combination or action and 

state--is described with an appropriate utility measurement.  The de- 

cision structure is summarized in "tree" form in Fig. 1.2. 

Now, according to the fundamental theorem of decision theory, 

the best action alternative is the one with the highest expected util- 

ity.  The expected utility of a given action is defined to be the sum, 

over all possible states, of the utilities of the state conditioned 

outcomes multiplied by the probabilities of the corresponding states. 

The expected utility of the "make deposit" alternative is, therefore. 
ii 
u 

LINDA'S 
ALTERNATIVE 

ACTIONS 
JIM'S 

REACTION 

MAKE  DEPOSIT^,^ JIM1 

DOESN'T 
./' LIKE  SOFA 

DON T MAKE  DEPOSIT 

ULTIMATE 
DECISION 

BUY  SOFA 

OUTCOME 
UTILITIES 

DON'T BUY  SOFA 
-.5 

STATUS  QUO 

FIGURE   1.2       LINDA'S DECISION  TREE 
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E("make deposit") - Prob("Jim Likes sofa") x U("buy sofa") 

+ Prob("Jim doesn't like sofa") 

x UC'don* t buy sofa") 

= .8 x 2 + .2 x (-.5) = 1.5 units .      (1.2.1) 

Since this exceeds the expected utility of the "don't make deposit" 

alternative (0 units), the best alternative given these action alterna- 

tives, states, probabilities, and utilities of outcomes  is to make the 

deposit.  In this case the cost of retaining flexibility on the decision 

to buy the sofa is well worth the expected gain. 

A BASIC DECISION MODEL 

The example of this section illustrated some of the essential fea- 

tures of decision analysis. Given an uncertain choice situation, the 

decision analyst performs a decomposition of the problem, usually fol- 

lowing a procedure symbolized by the flow graph shown in Fig. 1.3.  In 

a deterministic phase he specifies the alternative actions, states, and 

outcomes relevant to the problem and assigns dollar values to the out- 

comes.  In a probab i.istic phase he encodes the decision maker's uncer- 

tainties on the state variables in a subjective probability distribution 

and his feelings towards risk in a utility function.  Finally, an infor- 

mational phase may be executed in which calculations of the value of 

gathering additional information are made. At this point either an 

optimal action alternative is chosen, or the decision is made to gather 

further information and the cycle is repeated. 

DETERMINISTIC 

PHASE 

PROBABILISTIC 

PHASE 

INFORMATIONAL 

PHASE 

INFORMATION 

GATHERING 

FIGURE   1.3      THE  DECISION  ANALYSIS CYCLE 
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A Static Model 

If no additional information is anticipated to become available in 

the course of the decision process, the choice of decision action must 

be based solely on the decision maker's current state of experience.  In 

this simplest case there are five essential components of the decision 

maker's resource commitment problem.  These are: 

1. A feasible set D of mutually exclusive and exhaustive decision 

action vectors  d - (d^^ d ) .  One and only one d e D must 

be selected. 

2. An appropriate set S of mutually exclusive and exhaustive state 

vectors s - (s^...^) .  One and only one s e S will occur. 

3. A probability distribution F defined on S which consistently 

describes the decision maker's feelings about the likelihood of 

various states occurring.  Usually F is assumed to be indepen- 

dent of the decision d . 

4. A value function v(-,.)  defined on the Cartesian product of the 

sets S and D that describes the decision maker's assessment 

of the dollar value of each combination of decision alternative 

and state.  Since each outcome is described by a unique combina- 

tion of decision alternative and state, the value function may be 

thought of as defining a dollar value for each outcome. 

5. A utility V  » u(v) defined for each v(s,d), s e S , d e D , 

which expresses the decision maker's feelings toward risk. 

These five model components, denoted JD,S,F,V,U| , are specified on 

the basis of the decision maker's existing state of experience, which 

we explicitly denote by g . One special state of experience is the 

total knowledge available at the beginning of the problem, the prior 

experience. When the level of experience is assumed to be the prior 

experience, we shall use the special symbol £ . 

According to the principles of decision analysis, we can now lo- 

cate the decision maker's most preferred action by selecting the 

d e D which results in the greatest expected utility; that is, the 

analysis requires us to solve for 

d* - max"      u[v(s,d)] dF . (1.2.2) 
deD _SG S 
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Information Processing 

Without doubt, the major contribution of decision theory is the 

recognition of uncertainty and its partial (or complete in the case 

of clairvoyance) resolution through information.  By information we 

mean any data which may alter the decision maker's predictions. 

If the five facets of the decision model arc  correctly specified, 

the decision maker's outcome uncertainty is confined solely to state 

occurrerce.  We make this assumption.  Stated differently, although 

S , D , F , v , and u are all based on the decision maker's prior 

level of experience £ , we hypothesize that if 6 changes, the effect 

on the model is completely accounted for by a change in F ; that is, 

by probability revision.  The dependence of the decision maker's 

probability distribution on his state of experience will be made ex- 

plicit by using the inferential notation  !_slS^  to denote the prob- 

ability density function of s .  When we wish to denote explicitly 

that the expected value of a random vector _b  is based on the state 

of knowledge, we will use in place of 

E(s) S dF (1.2.3) 
S'- S 

the notation 

sfslgl   . (1.2.4) 
s a s 

If  the  impact of  information  is  strictly  limited   to probability 

revision,   the  basis   for  information  analysis   is provided by Bayes'   rule. 

To  illustrate,   suppose   that some  information-gathering method or ex- 

periment     T]    produces  information  or signal    y     from  some  set of pos- 

sible  signals    Y   .     Knowledge  of    y    changes   the  decision maker's 

distribution on    _s     to     [s|y,f]   ,  which  is  related   to  the prior dis- 

tribution     ij>|C}    by Bayes'  equation. 

[yls^j  [slej 
(1.2.5) 

The quantity     [y|jB»6]     is   the probability of observing a particular 
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y    ■ Y     for  any  value  of   the   btate  vector and   is  called   the   likelihood 

function.     The  quantity     fy|f]     is   called   the preposterior  distribu- 

tion,     it   Ls   the probability of observing a particular    y   e Y    before 

the   .signal   is   received  and   is   related   to   the   likelihood   function  ami 

p r u. r  by 

[yle] 
s i-: S 

[yls.PJ   [s|e] (1.2.6) 

A Dynamic Model 

When a decision maker anticipates receiving an information signa] 

y , it is often possible (and usually desirable) to make some components 

of his strategy contingent upon that signal.  In such cases we shall 

assume that his possible decision strategies are confined to some fea- 

sible set D of decision functions defined over Y .  Each decision 

function in D associates a feasible action from D to each possible 

signal in Y .  The optimal strategy is found by determining from the 

feasible set the function  d*(•)  that maximizes the expected utility. 

a 

d*(-) = max'1^ u(v[_s,d(y)]) (sly.P] \y\&]   . 
d (•) e D y'e Y _s 'i S 

(1.2.7) 

An Abstract Representation of the Basic Decision Model 

Figure 1.4 is a useful abstract representation of the basic deci- 

sion model.  Problem variables are divided into those that are under 

the control of the decision maker—decision variables—and those not 

under his control--state variables.  We can visualize the variables as 

control knobs, the settings of which determine the reading on a utility 

meter.  The decision variables knobs are set by the decision maker. 

The state variable knobs are set by a disinterested Nature.  The objec- 

tive of the decision maker is to choose the best possible settings for 

his decision control knobs, those settings which will produce the high- 

est expected reading on the utility meter.  If no additional information 

will be received, possible decision variable settings are the elements 

of the action set D .  However, if a suitable information system exists 

-12- 
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Utility 

Decision 
Variables 

FIGURE 1.4  AN ABSTRACT REPRESENTATION OF THE BASIC DECISION MODEL 

and the decision may be conditioned upon the arrival of information sig- 

nals from this system, then the possible decision variable settings are 

functions of the signals.  In this case a set of feasible decision strate- 

gies D is determined, and the decision maker must choose a decision 

control knob setting (a feasible function of the signal y ) from this 

set. 

i-l    A MATHEMATICAL DEFINITION OF FLEXIBILITY 

We shall now formulate a mathematical definition of flexibility us- 

ing the decision analysis framework developed in the last section. The 

Sofa Sale example illustrated that flexibility may be interpreted as a 

property of the set of decision alternatives (the choice set) associated 

with a given decision variable.  If the deposit is made, Linda has two 

alternatives foe  the purchasing decision—buy or don't buy--subsequent 

to learning an important piece of information--whether or not her hus- 

band likes the sofa.  If the deposit is not made, there is only one al- 

ternative. Linda will not purchase the sofa. With flexibility, the 

decision choice set is larger. 

We formalize this definition using the decision model illustrated 

in Fig. 1.5. This figure is identical to that of Fig. 1.4 except that 

we have illustrated the existence of an information structure r\ 

which will yield an information signal y . The structure is assumed 

-13- 
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FIGURE   1.5       BASIC  DECISION  MODEL WITH  INFORMATION STRUCTURE 

to distribute   the  signal  in such a way  that  some  function of    y  ,  de- 

noted     ^.(y)   ,   is available for the setting of the decision variable 

d     .    A common example  is  the case  in which    y    represents  data received 

over time and     ^.(y)     is the data received prior to the setting of the 

jl-n decision variable.     The  set of  feasible  decision functions    D    will, 

in general,   consist of a set of vector  functions    <:(d,,...,d  ) ^     for 

which  the component    d.     is  a  function only of  the  fraction of total ex- 

perience    (?.(y))G)   .     Imagine now that all decision variables with the 

exception of    d.     have been set  to specific  decision  functions    d, ,. . ., 

d.   ,,d    j,...,d0   .     We define    D.     to be  the set of possible  settings 

for  the decision variable    d.   , 
J 

D^(g)  - |d.|(d°,...,d°_1,d.)d°+1,....d°)   eD,§|. (1.3.1) 

We  shall  define   flexibility on  the  jth decision variable as  a property 
^o of  its  decision  set    D.   . 

J 
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DEFINITION  1.3.1:     Imagine  two decision models   W -    D,S,[s  P},v,ur 

and    HI'  ■ ■JD',S, [s |P.],v,U/-    which are  identical  except possibly 

for  the  feasible action sets    D    and    D1   .     Suppose  that there  is  an 

information  system    r\   and  that    B'   and    ß'1     are  the respective 

sets  of  feasible  decision  strategies which use  the  information  sys- 

tem    r| .     Given  the  state of experience    §    and  respective  decision 

strategies   for models    Tfl   and   Tn*   ,  we  say   that decision variable 

d.     is  less   flexible  than    d!     if    S^     is  a proper subset of    D^1 

(denoted    0° C 6°'   )   . 
J J 

The decision variable d. will be said to be flexible or inflexible de- 

pending upon whether or not the set D.  consists of more than a single 

(point) element. 

Notice that although flexibility is a property of the decision set 

for d  , in general, it will depend upon the decision settings for all 

other decision variables.  This corresponds to the common situation in 

which an action taken now is a decision among later choice sets.  Per- 

haps the action is to acquire a choice set.  Perhaps the action is to 

narrow down an earlier choice set.  The decision on whether or not to 

make the deposit in the sofa-purchasing example can be interpreted in 

either of these ways.  In such cases defining flexibility as the size 

of the decision choice set is intuitive. 

The definition gives us some clues for increasing the flexibility 

of a decision variable.  One method is to choose the setting of d-d. 

(which we mean to denote those decision variables in _d with the excep- 

tion of d ) so as to yield a large choice set for d. .  This is what 

we did in the sofa-purchasing example. Another is to uncover new al- 

ternatives so as to increase the size of the set 5) of feasible deci- 

sion strategies.  Both techniques can be used to analyze the effects of 

increasing flexibility;  the distinction is between an implicit and an 

explicit evaluation. 

1.4 PLANT FLEXIBILITY 

In this section we shall apply our definition of relative flexibil- 

ity to a classical problem in micro-economic theory. The problem has to 

do with choosing production flexibility in the theory of the firm and is 

schematically illustrated in Fig. 1.6. A number of various designs for 
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CAPACITY OUTPUT  REVEALED QUANTITY 

FIGURE 1.6  PLANT FLEXIBILITY DECISION PROBLEM 

a production plant are possible.  The particular design chosen will de- 

termine the output capacity for the plant.  At the time plant output 

capacity is chosen, output price and, therefore, optimal output are not 

known with precision.  However, a probability distribution on output 

price is known.  After the plant has been constructed output price is dis- 

closed, and plant output is set so as to maximize expected profit.  It 

is desired to determine the manner in which varying the plant's output 

flexibility affects expected profit. 

Baumöl [1, p. 93] argues that "the existence of uncertainty will 

lead to the (increased) use of equipment whose scale of operation is 

flexible," We shall explore this conjecture using two simple models. 

The first model was deviled by Marschak and Nelson [10] and uses Stigler's 

[13] measure of plant flexibility, a measure which is incompatible with 

our own.  For Stigler, flexibility refers to the rate of change of the 

plant's marginal cost curve.  In the second model, plant flexibility is 

measured in a manner consistent with Definition 1.3.1. 

MODEL 1 

Assume the various plant designs are described by  quadratic total 

cost curves, 

2        2 
TC = ax + bx + ax  , 

m 
(1.4.1) 

where    x     is  output  quantity.     Average cost   is   then 
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AC ■ ax + b + a — 
X 

(1.4.2) 

and 

dAC(x ) 
AC(x ) - 2ax + b , —j—^- 

m     m    '   dx 
- 0 

d'ACCx ) 
m 

dx2 
2a 

m 
(1.4.3) 

Thus, the quantity x  represents the output with minimum average cost, 

and the parameter a measures the curvature of the average cost curve 

(Fig. 1.7).  The smaller a is, the flatter the curve at its bottom. 

Following Marschak and Nelson and Stigler, we shall use 1/a as a meas- 

ure of the plant's flexibility to produce outputs other than that origi- 

nally planned. According to Definition 1.3.1, however, all such plants 

would be termed equally flexible since, regardless of a , any output 

along the positive real axis is feasible. 

For price P , profit is given by 

2        2 
Px - ax - bx - ax 

ra 
(1.4.4) 

TC 

(OUTPUT QUANTITY) 

FIGURE   1.7       TOTAL AND AVERAGE  COST CURVES 
FOR PLANT FLEXIBILITY  MODEL  1 
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Assuming P > b , the profit maximizing output 

x* 
P - b 

2a (1.4.5) 

produces an optimal profit 

n* (P -   bV 
4a ax 

m 

Now, suppose price is distributed with mean P and variance 

Expected profit is then given by 

(1.4.6) 

2 

E(Tt*) - (p ; b) - ax2 +^ 
4a      m  4a (1.4.7) 

On obtaining this result, Marschak and Nelson make the observation that 
2 

as subjective uncertainty increases (as measured by a ), expected profit 

for the more flexible plant (small a ) rises relative to expected pro- 

fit for the less flexible plant (large a ). Broadly interpreted, this 

supports Baumol's claim. 

Yet, we are still left with the question of whether 1/a is a good 

measure of production flexibility.  One disturbing feature of this meas- 
2 

ure is that in the absence of uncertainty  (a ■ 0) expected profit still 

increases as a decreases.  If price is known with certainty, should not 

the potential for adjusting to different prices have zero value? 

MODEL 2 

This time we assume the various plant designs are described by total 

cost curve of the form 

2        2 
ax + bx + ax 

m 
TC 

x •' x + A 

x > x + A 

(1.4.8; 

The maximum output which can be produced from such plants is x + A , 

and, therefore, the magnitude of A determines the size of the plant 

output choice set.  Following Definition 1.3.1, we may take A to be a 
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measure of  the plant's  output  flexibility--the  larger    A    is,   the 

greater  the plant's   flexibility over  its  output  setting. 

Average  cost  is  given by 

AC 

ax+b + a —  ,     x<x + A 

> x + A 

(1.4.9) 

Once again, x  represents the output with minimum average cost (Fig. 

1.8).  For outputs less than x + A , profit maximizing output and opti- 

mal profit are given by expressions identical to those of Model 1 ; 

x* 
P - b 

2a ' (1.4.10) 

A     4a 
-ax , b < P < 2a(x + A) + b . 

m (1.4.11) 

If price exceeds  2a(x + A) + b , the maximum output x + A will be 

chosen and profit will be given by 

TT* •= (P - b)(x + A) - a(^ + A) - ax2 , P > 2a(x + A) + b . (1.4.12) 
A m 

2ax  + b 

(OUTPUT QUANTITY» 

FIGURE  1.8      TOTAL AND AVERAGE COST CURVES 
FOR PLANT FLEXIBILITY MODEL 2 
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Suppose price P  is normally distributed with standard deviation 

a and mean P - 2ax + b .  (Actually we should have P strictly 

greater than b to insure that the optimal output is positive,  We as- 

sume that the probability of obtaining a P < b with the normal dis- 

tribution is small enough to have a negligible effect on the analysis.) 

The quantity x represents the expected plant output, and A is the 

amount by which maximum plant capacity exceeds the expected operating 

output.  Since minimum average cost is  2ax + b ,  if x exceeds x ra m 
the plant may be expected to make a profit. Denoting by n(x;m,a) the 

normal probability density with dummy variable x , mean m , and stan- 

dard deviation a , the expected profit lost by not choosing a. completely 
flexible plant is 

E(Tt '   V ' ^ - t) "(P;2ax + b,a) dP 
ZaCx+AHb'       A 

r" [P-2an; -I-A)- bl2 /n „ _ 
" ^ V ^ i L- n(P;2ax + b.a) dP 
2a(x+A)+b        ^ 

2      « 
a       p     2aA 2 

""Ää  owJ   (y ■ ^  "(y;0»1) dy . (1.4.13) 
2aA/CT- 

where we have used the change of variable y - (P-2ax-b)/cr . As an aid to 

evaluation, the integral 

I("T)'        J <y-i7)2 n(y;o.i) dy (1.4.14) 
2aA/(7 

has been plotted in Fig.   1.9.    Observe that the difference in expected 

profit between the completely flexible plant    (A - -)    and the plant 

with minimum flexibility     (A - 0)     is    a2/8a .     Since expected profit 

for  the completely  flexible plant is    [(P-b)2]/4a -   axf + CT2/4a 
have 

„ we m 

E^'i^-  I(^)] + a(x2-x2)   . a.4.15) m 
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FIGURE   1.9      PLOT OF  1 {¥} 
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T 
PSPP 

Finilly, observe  that 

I 

ö
E(T*)  n oaA 

(1.4.16) 

I'  denoting the derivative of I . Each of the two factors in (1.4.16) 

increases with a .     Thus, the gain in expected profit achieved through 

flexibility is larger, the greater the price uncertainty as measured by 

a .  If there is no uncertainty (a ■ 0), there is no advantage in having 

flexibility; but, as c    increases, expected profit for a more flexible 

plant rises relative to expected profit for a less flexible plant. This 

model not only supports Baumol's claim, it also conforms well with ou:r 

intuitive notions of how the value of flexibility should depend on uncer- 

tainty. 

CONCLUSIONS 

Our definition seems to perform reasonably well when applied to the 

problem of determination of plant flexibility. Notably, it leads to re- 

sults which conform with our intuitive feelings. However, unlike 

Stigler's definition, ours says nothing about the relative costs of vary- 

ing a decision variable over a choice set. While this may seem to be a 

serious limitation, we shall see that there is an important application 

to problems in which we ignore the costs of varying pre-set decision 

variables. This topic is the subject of Chapter 2 o£ the thesis. 
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DECISION 
MAKER 

SETS d o 
NATUHE 

SETS 
OUTCOME 

FIGURE 2.1       DECISION  PROCESS WHEN 
NEITHER   INFORMATION  NOR 
FLEXIBILITY  IS AVAILABLE 

d* max <u d,e: (2.1.1) 

Equation (2.1.1) Is merely a restatement of Eq. (1.2.2) using the infe- 

rential notation described in Section 1.2. Use of this decision strat- 

egy will result in a maximal expected utility which we will denote by 

u |e> : 

<u|e> ■ <ii|d*)e> . (2.1.2) 

Now, suppose that a clairvoyant offers us perfect information on the 

outcome of state variable s. , but that we are restricted to using such 

Information only for the setting of decision variable d. .  In other 

words, at Che time the  i^1 stale variable is revealed, flexibility 

exists only on the j11"1 decision variable.  Schematically, the time order 

of the decision process is now as illustrated in Fig. 2.2. 

The maximum amount of money the decision maker should be willing 

to pay to convert the decision problem in Fig. 2.1 to the decision prob- 

lem in Fig. 2.2 we define to be the expected value of perfect information 

on state variable s.  given perfect flexibility on decision variable d. . 

DECISION 
MAKER 

SETS d-t). 
-    I 

■o 
DECISION 
MAKER 

SEES s D 
DECISION 
MAKER 

SETS d o 
NATURE 

SETS 
•♦• OUTCOME 

FIGURE  2.2       DECISION  PROCESS WITH PERFECT  INFORMATION ON s.  GIVEN PERFECT 
FLEXIBILITY ON ä.) 
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Tlic   information  is  said  to be perfect  because   it  totally eliminates  uncer- 

tainty on  the  ith state  variable.     The  flexibility  is  said  to be perfect 

because  receipt of  the  information  does  not  in  any way  limit  the  basic 

alternatives  available  for  the  jtl1  decision.     The expected value  of per- 

fect   information on    s.     given perfect   flexibility on     d.   ,   denoted 

^Cs^Fdi 1^ »  may be obtained   from an expected value of perfect  infor- 

mation calculation  in which  only  the   flexible  decision variable  is  ad- 

justed  to compensate  for  the  Riven   information. 

CALCULATION PROCEDURE 

Let  information  on    s.     given   flexibility on    d.     be purchased at 

a price    p   .     Calculation  of     "^Cs• Fd • 1^"'    Proceeds as   follows: 

1. Find  the  optimal decision  strategy  for decision variable    d.   , 

-1 *       i 
d*(s. ,.d-d.) - max "" U,d,p,p ■ fs Is . ,? ]   . (2.1.3) 

J J d.       s-s,' ' 1 

J      —    i 

2. Solve for the optimal decision settings for the remaining decision 

variables. 

(d-d.)* » max ,  <uls   .d^.d-d  ,p,e.> rs.|P"!  . 
d- d.     s. '      J J 1 

-     J        1 

(2.1.A) 

3. The utility of  the  lottery with   information on     s.   ,   flexibility 

on    d.     is   then 

<u]csiFdj>p,e> = <u|d*(d-d )*,p,e> (2.1.5) 

4.       The value of    p    which  satisf ics 

iujes Fd ,p,e> - <u!e: (2.1.6) 

is  defined as   the «.-xpected  value of perfect  information on    s, 

given perfect  flexibility on     d 
j 
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PERFECT INFORMATION ON A SET OF STATE VARIABLES GIVEN PERFECT FLEXI- 

BILITY ON A SET OF DECISION VARIABLES 

Perfect information on a subset of state variables, say all  s. , 

i el;- (l,...,n| , given flexibility on some subset of decision vari- 

ables ^ tl . j. .    j  Jc (l,,..,m) , would be defined as the information 

structure in which the value of each s. ,  i e I was revealed to the 

decision maker prior to his setting of the decision variables d. , 

j s J .  The value of such information given flexibility would be de- 

fined and calculated in an obvious way following steps similar to 1-4 

above.  If the decision maker is allowed to adjust all decision variables 

in response to information, we say that he has information given complete 

flexibility.  This is the usual assumption for the analysis of informa- 

tion in decision theory literature. 

CASE OF LINEAR UTILITY 

A special case in which the value of information given flexibility 

is especially easy to calculate occurs if the utility function is linear 

in value.  In this situation, if Cs Fd denotes the information struc- 

ture with clairvoyance on state variables  s. ,  i e I and flexibility 

on decision variables d. ,  j e J , then the value of this information- 

flexibility structure is given by 

^Cs Fd lP>= ^ICW^- ^!e> • (2.1.7) 

Equation   (2.1.7)   is  easily proven.     Taking  the example of Fig.   2.2 and 

assuming    u-a+bv,     b^O, 

<u|Cs Fd  ,?,&> -  <ii|e>" a + b(<v|Cs.Fd  ,e> - p) -  a -  b<v|S> 

- b('-v|Cs.Fd.,e> -   <v|e>-  p)   . (2.1.8) 

By definition,  when    p ■ <Vcs.pcj.lß> ,   the  left-hand  side of  (2.1.8)   is 

zero,   implying 

^Cs  Fd   le> " ^jCs^d    ?.> -  <v|e> . (2.1.9) 
i    j 
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RELATION OF INFORMATION GIVEN FLEXIBILITY TO DEFINITION 1.3.1 

Information given flexibility increases flexibility, as defined in 

Chapter 1, by increasing the size of the decision set D  ,    As a result, 

the decision set for d. , D. , is larger both for the prior state of 

experience 6 and for the posterior state of experience (s.,e) . 

When the state of experience is 5 and the model is as illustrated 

in Fig. 2.1, the feasible decision set consists of all m-dimensional 

vectors lying in some subset D of the Euclidian space Em .  Using the 

notation of Chapter 1, 

D°(e) -{d.|(d°,...,d°_1.d.,d°+1....,d^) SD,S}.     (2.1.10) 

If the model is as illustrated in Fig. 2.2, the jth  decision variable is 

more flexible than (or at least as flexible as) the model of Fig. 2.1 

since d. may now be a function of s. : 

D°,(e).{d.(.)|(^....,^1.dj(si),d°+1....,d°) sD 

for all s.,ej . (2.1.11) 

Because  the set of  functions  from the space of    s.     to    E      includes  the 
i i 

real numbers as a trivial case,    D (ß) c 0°  (C)   . 

Once  the  information    s.     becomes known,   in  the  case of Fig.   2.1 

the  feasible decision set  for    d.    consists of a single element, 

^.e)-{a°} (2.1.12) 

However, in the case of Fig. 2.2 it consists of all real numbers that 

put _d in D : 

Hence, 

D°(s.,e)c D° (s^e) 
J 
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2.2 APPLICATIONS OF THE EVPIGPF 

Just as the expected value of perfect information (EVPI) is a useful 

yardstick for evaluating information-gathering systems, the expected 

value of perfect information given perfect flexibility (EVPIGPF) is use- 

ful for evaluating information distribution systems. 

Suppose a decision maker is considering the construction or pur- 

chase of some information-gathering and distribution system.  The cost 

of the proposed system will consist, first of all, of information col- 

lection, tabulation, and storage costs.  In addition, however, there will 

be costs involved in having a particular piece of that information avail- 

able at a specific time or available to a specific individual in the 

decision process. Different information distribution systems will incur 

different costs, just as systems which gather different information have 

differing costs.  By placing a value on completely resolving specific 

uncertainties for specific decisions, the EVPIGPF allows the decision 

maker to consider seriously only those information-gathering and distribu- 

tion schemes whose costs do not exceed this value.  It may thus be used 

to evaluate the various information-distribution structures that might be 

used in a given resource commitment problem. 

We can state this use somewhat differently in terms of evaluating 

flexibility rather than information.  Although decision analysis method- 

ology implicitly assumes decisions to be irrevocable, in many cases deci- 

sion variables can be reset at some cost. As stated by Howard [8, p. 

507], 

An executive viewing the results of a decision analysis 
may think: "It couldn't come out that bad because I 
would have done something about it." The analysis does 
not generally take into account the ability to compen- 
sate for ultimate state variable changes through adjust- 
ments in decision variables. 

Flexibility provides a means, and the EVPIGPF provides a measure of the 

value of taking into account the possibility of compensating for ultimate 

state variable changes. 

EXAMPLE:  THE ENTREPRENEUR'S PRICE QUANTITY DECISION 

An entrepreneur must decide upon a price and quantity for his 

product.  He is uncertain about the total cost c per item but feels 

-28- 
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that  it may be  represented by  the  uniform distribution of Fig.   2.3.     He 

knows   that  the demand  for his product will be a decreasing  function of 

his  price,   but  for any given price he  is uncertain as  to  the exact 

quantity of his product demanded.     For  this  reason he hypothesizes  the 

following  functional  form  for demand    x : 

x = - -  b -  e  , (2.2.1) 

where 

x ■ demand (in thousands of units), 

p ■ price (in thousands of dollars), 

a,b = parameters of the demand curve, and 

e = a random variable independent of c and uniformly 

distributed from zero to one. 

Figure 2.4 shows the probability density for e and the demand curve 

x(p) .  Further let 

q = quantity produced (in thousands of units)  and 

v » net profit (in millions of dollars). 

We wish to determine our entrepreneur's expected net profit and the 

value to him of using numerous perfect information-perfect flexibility 

structures.  In other words, we would like to know how much it is worth 

Hej c    = TOTAL COST PER  ITEM 
(in thousands of dollars) 

FIGURE 2.3     PROBABILITY DENSITY FUNCTION 
FOR PRODUCTION COST IN THE 
ENTREPRENEUR'S DECISION 
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Knowledge of EVPIGPF's can generate insight that is not provided by 

EVPI's alone.  For example, observe that the value of clairvoyance on 

costs given flexibility on price is zero, but the value of clairvoyance 

on costs given flexibility on price and quantity is $139,416.  InTorma- 

tion about costs is useful for setting price but only if that informa- 

tion is used for setting quantity as well.  Once quantity has been 

fixed, price must be set so as to clear the inventory and costs are no 

longer a consideration.  Insight may also be provided on decision tim- 

ing.  If information on the demand parameter e  is purchased, vir- 

tually all the usefulness of the information, $151,639 worth, can be 

obtained using it only to set price  Delaying production until after 

this information becomes available will only be worth an additional 

$285.' 

2. 3 INFQR? -iTION GIVEN PARTIAL FLEXIBILITY 

We referred to the above calculations as situations of "perfect 

information with perfect flexibility." This is because a clairvoyant 

was imagined to have provided us with perfect information on the out- 

come of state variables, and we presumed that decision variables could 

be set anywhere within the feasible action set.  In many cases the ap- 

proximation of the clairvoyant is not satisfactory for the evaluation 

of an information-gathering scheme; we must consider the purchasing 

of an information signal or experiment rather than perfect informa- 

tion.  This presents little conceptual difficulty, however, as Bayes' 

equation allows us to calculate the effect of experimentation on our 

prior distribution.  Hence, we can evaluate the economic impact on our 

profit lottery. 

Similarly, the delaying of a decision so that more information may 

be gathered may well restrict  the range over which that decision vari- 

able may be varied.  If our entrepreneur were living in our present day 

of shortages and potential government legislated price freezes, he 

might find thai a short delay could seriously restrict his range of 

feasible output quantities and prices. 

The model appropriate for representing diminished flexibility de- 

pends on the nature of the problem being investigated.  In some cases, 
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flexibility for a particular decision variable Is itself a decision 

under tbe control of the decision maker.  Contracts may be negotiated 

wbicb spell out in legal terms the latitude available for some action. 

A specific example would be the purchase of an "option to buy" so many 

units of some commodity.  In other situations, the restriction of flex- 

ibility is the work of Nature and under little control of the decision 

maker. 

A MODEL FDR PARTIAL FLEXIBILITY 

A fairly general model for evaluating information and flexibility 

is the following.  Imagine that for a price p , instead of having to 

set d    prior to learning js , our decision maker takes some action f 

which is designed to preserve a measure of flexibility on tbe j  deci- 

sion variable d. .  The flexibility is preserved until after an infor- 

mation system  r can be made to produce a signal y  from some set of 

possible signals Y . 

The precise flexibility maintained for d. will, in general, de- 
f    i 

pend upon both  d-d.  and _s .  Let  D.^d-d.,^)  denote the choice set 

for d.  faced by the decision maker if the flexibility producing ac- 

tion is taken.  The primary decision problem and the decision problem 

with the information system and partial flexibility are illustrated in 

Fig. 2.5. 

D 
PRIMARY   DECISION  PROBLEM 

DECISION 

MAKER   SETS 

d 

•o 
NATURE 

SETS 
-♦■ OUTCOME 

DECISION  PROBLEM  IF  ACTION  f  IS PURCHASED 

6 DECISION 

MAKER  SETS 
d-d 

■o 
INFORMATION 
 » 
SYSTEM  YIELDS 

SIGNAL v 

Chi 
CHOICE  SET 

0    REVEALED 

DECISION 

MAKER  SETS 

d. WITHIN  D*. 
I I 

o 
NATURE 

SETS 

-*- OUTCOME 

FIGURE  2.5      PRIMARY DECISION PROBLEM  AND DECISION PROBLEM WITH  INFORMATION 
SYSTEM AND PARTIAL FLEXIBILITY ON d-, 
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Value of Infomation Given Partial Flexibility 

The value of the information system n with the partial flexibil- 

ity on d  is defined as the maximum price p our decision maker 

should be willing to spend to achieve the problem conversion shown in 

Fig. 2.5. 

Calculation of this value for the general model described above 

will, in most cases, be quite difficult, so a number of additional as- 

sumptions are likely to be made.  We shall illustrate the calculation 

under two additional assumptions: 

1. The choice set D  is uncertain but independent of d-d, . 

2. Choice set uncertainty is limited so that  D.  must be one of 
f J 

the K sets D^k) , k » 1,...,K .  The probability that set 

D (k)  results given that the information signal is  y  is 

Pk(y) • 

For notational convenience we shall also assume that any information 

on _s  that our decision maker is able to deduce from the outcome 

DjCk)  has been Incorporated into the signal y .  (Following the usual 

assumption of information analysis we assume that the data y  is inde- 

pendent of the actions d .) 

To begin the calculation, assume that the choice set is D^(k) 

and the signal is  y .  The optimal feasible action for d.  will be 

the solution to 

<uld-d ,y,D (k)>P,e>-  max    f <i ld,s ,p,e> fs |y,ß} ,   (2.3.1) 
J J d.sDr(k)   sl 

J     J - 

where  the posterior distribution     fsly,e]     is  given  by Bayes'   equation 

(1.1.5).     Now,     pk(y)     is   the probability  that   the  choice  set will be 

Dj(k)     given  that  the   signal   is     y   ,  and     fy|fi]     is   the preposterior 

probability  that  the  data    y    will actually be  obtained.     Therefore, 

the  expected  utility of  the optimal  decision strategy,  given   the   in- 

formation  gathering  technique     n    and partial   flexibility on    dj     pur- 

chased at  a price    p   ,   is 

3^- 



K 

<u|Tl,f,p,e> - max !       ■   «ai'd-d   ,y,D (k),p,ß> p. (y)   fylpl  .       (2.3.2) 
d-d.     yeY1    .^ J J k 
-    j k-1 

Finally,   the value of    p    that satisfies 

<ülri,f,p,e;- -  ■rVi\P> (2.3.3) 

is the value of the information system n with the partial flexibility 

on d. produced by action  f . 
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CHAPTER 3 

DECISION MODELS WITH QUADRATIC VALUE FUNCTIONS 

In this chapter we shall exploit the special characteristics of a 

quadratic function in an effort to gain a better understanding of the 

value of obtaining information given flexibility. The analysis will be 

built around the basic decision model of Fig. 1.4 for the special case 

in which (1) the decision maker's value function is quadratic in both 

state and decision variables, and (2) the decision maker's utility 

function is linear in wealth. 

Almost all of the essential features of  the quadratic problem are 

present in the case in which there are two state variables and two deci- 

sion variables. Consequently, we begin the analysis with the following 

example. 

3.1 EXAMPLE: A FOUR-VARIABLE PRODUCTION PROBLEM 

A firm produces two outputs using fixed proportions of two inputs. 

Each unit of output one requires a^^ units of input one, a« units of 

input two.  Similarly, each unit of output two requires b.  units of 

input one and h^    units of input two.  The marginal revenue produced 

by selling the two outputs smoothly diminishes as the quantity of 

either output increases ("diminishing marginal returns"). Specifically. 

we assume that the revenue is a quadratic function of the respective 

output quantities x,  and x„ : 

2   2 
R = ■xl " x2 + 2qxlx2 + wlxl + W2X2 + h *        (3.1.1) 

Output units have been chosen so as to make the coefficients of the 

quadratic terms -1 .  The quanr.ity q measures the complementarity 

(-q  the substitutability) between the two output products. 

Let the respective per unit prices of the inputs be 

P1 - m1 + s1 and p2 - m2 + s2 , (3.1.2) 

where n^ and m2 are mean prices and Sj^ and s  are random 
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variables with zero expectations.  The net profit to the firm will be 

(see Fig. 3.1) 

2   2 
n ■ -X, - x2 + 2qx, x2 + w,x. + w2x2 + h 

-  >:i (^Pi  + a2^2>  "   x2^blpl  + b2P2)   *   ^3-1-3^ 

Our objective   is   to  determine  the  quantities    x,     and    x„     that 

will maximize  expected profit.     Let us measure  these  quantities  from 

the values     x",     and    x-     that would be  optimal  if  the   input prices  are 
9 2 2 9 9 at  their mean  values.     Since     ^-f/^x,   ■  5 "f/^x^ =■ -2   ,     ^TV^rftc2 ■ 2q   , 

the concavity  condition 

(3.1.4) 
ox. 

^2 
.2n 

,     2 
axl 

.2 
fl      TT 

\^2 

.2 

^1^2 ,     2 
-XT 

PRICE 
INPUT 

1 

< 
INPUT  i 3 

QUANTITY 

OF  OUTPUT 

1 

COST 
INPUT  1 

c INPUT 2 
> 

QUANTITY 

OF  OUTPUT 

2 

•>     MARKET     -+ 

REVENUE 
R 

t + 

*(L)^ 
PROFIT 

COST 
INPUT  2 

PRICE 
P2    )  INPUT 

FIGURE  3.1       A  FOUR-VARIABLE  PRODUCTION  PROBLEM 
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is satisfied for  |q|   1 .  This assumption insures that for every com- 

bination of p^    and p  ,  n has a unique maximum.  Putting prices at 

their mean values, differentiating, and sotting the results to zero, we 

obtain 

~   Wl " alml'a2m2 + q(w2 " blml " b2m2) 

2(1 - qZ) 

q(w1 - alml  -  a2m9) + w2 - h^  - b^ 

C 2(1 - q2) • 

Defining d,  and d„ as deviations from those values, 

x„ 

(3.1.5) 

d + x,  and  x„ = d + x  , (3.1.6) 

profit, in terms of the deviations  d.  and d  of the output levels 

from their deterministic optimums ami in terms of the deviations s. 

and s«    of  the  input prices   from  their mean  values,   is  given by 

n^s^c^.dg)  - -d1 -   d2 + 2qd1d2 -   d1(a1s1 + a2s2)  - d2(blSl + b^^ 

-  :<"'1(a1s1 + a2s2)    -   x2(b1s1 + b2s2) + TI ,   (3.1.7) 

where 

Ft -  -(xpX2;m^,m2) (3.1.8) 

is the maxi.iium profit if input prices are set at their mean levels. 

Since the last three terms in (3.1.7) do not depend on the decision 

variables, for the purposes of optimization we may redefine the profit 

origin and take as our value function 

v(s1,s2;d1.d2) = -d
2 - d2 + 2qd1d2 - d^a^ + a^) 

- d2(b1s1 + b2s2) .    (3.1.9) 
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Notice that if q were zero the value function In (3.1.9) would 

be additive, that Ls, oi   LN:1
 form 

v(s;cl1,d2) = Vj^^^lj) + v2(s;d9) . (3.1.10) 

Thus,  q  is a measure of the interaction between the decision vari- 

ables.  The quantities within the parentheses in (3.1.9) are the devia- 

tions from mean values of the per unit output costs for outputs one and 

two.  The parameters a. , a9 , b. , and b_ measure the interaction 

in the value function between the various state and decision variables. 

We shall assume that  s,  and o have  the bivariate normal 

dis tribution 

tV2le! 
:n/r.7 2     <  2(1- -) -X 1'       12   ^ 2' JJ 

(3.1.11) 

The quantity , is the correlation coefficient and indicates the ex- 

tent to which the variables tend, on the average, to move together or 

in opposite directions.  It is easy to show that 

E(s1s2) = .V2 , 

a- 
E(sJs1) = p 

1 ' 

(3.1.12) 

(3.1.13) 

We shall now proceed to calculate the optimal decision rules and 

relative values under each of the possible perfect information with 

perfect flexibility structures.  In each case the optimal decision 

rules were obtained by differentiation. 

CASE 1:  NO INFORMATION (NO FLEXIBILITY) 

<vje> « max E[-ü1 - d2 + 2qd1d2 - (^(a^ + a^) - d^b^ + b^) ] 

dlC2 

0 , (3.1.14) 

d* - d* - 0 . 
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Because <v|e> « 0 , the value of any information given flexibility 

structure,  <v |CF,P~-. - <v!P,> , will simply equal the expected payoff 

<v|cF,e> . 

CASE  2:     COMPLETE  I^fFORMATION -  COMPLETE FLEXIBILITY 

•V Ics^s  Fd1d2,e> « EF max    v 
d1d2 

2,   2 2.   2 (a1+2qa1bI4-b1)^1 +  2[a1a2+q(a1b2-fa2b1)+b1b2 ] o^a^a^qa^-t-bpq 

4(1 -  q^) 

^ 

llSl "f a2S2 + q(blsl + b2S2) 

2(1 -   q2) 

q(alSl + a2S2) 'l blSl + b2S2 

2(1  -   q2) 

(3.1.16) 

(3.1.17) 

Defining ^ «= a^^  + a^ ,  c2 b.s. + b s  to be the deviations of 

the per unit output costs from their mean values, 

d* 
cl + qc2 

2(1 - q^) 
9  and d* - 

qcl I  c2 
2(1 - q2) 

(3.1.18) 

Observe that if the outputs are complements  (q > 0) , [substitutes 

(Q < 0)], the optimal output quantity falls as its cost rises and 

falls [rises] when the cost of the other output rises.  Expressing the 

optimal decision rule as 

(a +qb )s +(a +qb )s (qa +b )s1+(qa9+b,)s- 

2(l-q') 2 2(l-q
2) 

(3.1.19) 

we see that the optimal quantities will normally fall when an input 

price is increased.  In order for the reverse to be the case, we must 
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have either little coupling between  the output processes   ( a^    or    b^ 

close  to  zero),  or  the products must be  strong substitutes. 

We may also write   (3.1.16)  as 

2 2 
oc    + 2qrac  ac    + a, 

.^vlcs.s  FcLd^p. -—^ 5_2 2   ^ (3.1.20) 
1  2     i  - 4(1 -  qZ) 

where 
2 2 

2     _ „,2 
Ic2 

= E(c  )   ,  and 

r - E(c c )/o    a      . 
Cl  c2 

Observe   that  the advantage of making  decisions with  full knowledge  of 

costs  is   larger,   the  larger   the product     (qr)     of  the  coefficients  of 

interaction and correlation.     If correlation between output costs   is 

positive,   the advantage  is   larger  if  the output products  are  comple- 

ments     (q  > Ö)   .     If  correlation  is  negative,   the  advantage  is   larger 

if  the  outputs  are  substitutes     (q  < 0)   . 

CASE   3:     PERFECT INFORMATION ON     s,   -   COMPLETE FLEXIBILITY 

<v|Cs1Fd-d2,e> ■ E  f   max    E  (v^) 

Wa     S2 

(aj+2qa1b1+bj)a^ +2[a1b1+q(a1b2+a2b1)+a2b2] or^a^Ka^qa^+b^ o a2 

4(1 -   q2) 

2 2 
c, M    c    c c (l-o )a,       , o 

- — Kr r  (S + 2^7b2 +  V   ' (3.1.21) 
4(1 -   ql) 4(1  -   qZ) 

al+a2D V. +q(bl+b2P ^ q(a1+a2P ^O+b^p ^ 
d* - •• — s,     and    d* * 5  s, 

1 2(1 -   q2) 2 2(1 -   q^) 

(3.1.22) 
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The decision functions (3.1.17) are identical to (3.1.22) except 

that in the latter case the random variable  s„  is replaced by the 

estimate E(s2|s1) - o^/o^Sj^ .  This is an illustration of the well- 

known certainty equivalence principle:  When the value function is 

quadratic, in the face of uncertainty the decision maker behaves as if 

he were certain that random variables take on their expected values. 

Subtracting (3.1.21) from (3.1.16) we obtain the value of obtain- 

ing clairvoyance on s, and s0 over the value of clai 

alone. 

,  »nu o^ UV^L une vaiue or clairvoyance on s1 

(1- 2)r2 

<V|Cs1s2Fd1d2,e>- «vjCs^d e> 
P—^  (a^qa.b+b^) . 

4(l-q ) *    *       I 

(3.1.23) 

Clairvoyance on s1 and s2 over clairvoyance on s1 is more valuable 

the smaller the correlation (positive or negative) and the larger the 

variance of s2 . As a function of the interaction q , the value ap- 

pears as illustrated in Fig. 3.2. 

FIGURE 3.2 THE ADDITIONAL VALUE OF CLAIRVOYANCE ON s    AND 
s2 OVER THE VALUE OF CLAIRVOYANCE ON s,  ALONE 

AS A  FUNCTION OF q  IN THE  FOUR-VARIABLE PRODUCTION 
PROBLEM 
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CASE 4:  PERFECT INFORMATION ON s  - COMPLETE FLEXIBILITY 

By symmetry, 

I 
<v|Cs2Fd1d2,e> -   

2 2 
ac +2qra„  a^ +a, 

!! C2  ^2      (1-P2)CT1  ,  2A0      .   XK2, 
 5 7- (a1+2qa1b +0.) 
4(I-q^) 4(l-q^ 

(3.1.24) 

It is  interesting to compare  the value of clairvoyance on    s,    with the 

value of clairvoyance  on     s_   .     Subtracting  (3.1.24)   from  (3.1.21), 

<v|Cs1Fd1d2,e> -  <v|Cs2Fd1d2,e> 

2 
-  ^'P I     [(aJ+2qa1b1+b2)CTl

2-(a2+2qa2b2+b^)a2] 
^(i-q ) 

(3.1.25) 

Which information,  s.  or s9 , is more valuable depends on the vari- 
2       2 

ances r^ and ^    an^  also on the relative proportions in which the 

inputs are used.  If the input prices are strongly correlated, which 

of the two prices is ascertained is not important. 

It is well known that the value of simultaneous information on 

several variables may br. greater than or less than the sum of their 

individual values of information.  Subtracting (3.1.24) and (3.1.21) 

from (3.1.16), 

<v|Cs1s2Fd1d2,e> -   <v|Cs1Fd1d2,e> -   <vlOs^Fd^^ 

2 2     2 
(a1+2qa1b1+b1) p  ^ + 2[a1a2+q(a1b2+a2b1)+b1b2] pa^ 

■     m --■■■■' -..,-■- 1 .i— ■- -----    ..-.-.    . ■      ■   -.-   —1 

4(1 -  q2) 

2 2     2  2 
(a2+2qa2b2+b2)p a2 

4(1 - q2) 

(3.1.26) 

As a function of the correlation coefficl'- .t p , this appears as in 

Fig. 3.3. Observe that if the random variables are independent (p ■ 0), 

then the value of clairvoyance on s. , s_ equals the sum of the indi- 

vidual values of clairvoyance on s, and on s„ .  The sign of 
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<«ICi1i2F:d1d2,e> - <vlCi1F«l1d2,e> - ^iC^Fd^^O 

•» P 

FIGURE 3.3      THE JOINT VALUE OF CLAIRVOYANCE MINUS THE 
INDIVIDUAL VALUES OF CLAIRVOYANCE  IN THE FOUR- 
VARIABLE PRODUCTION PROBLEM 
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<v|Cs1s2Fd1d2,e> -   <v|Cs1Fd1d2,
c■-. -   <v |Cs2Fd1d2)p->    depends on    p    and 

q    as  illustrated  in Fig.   3.4.    As we might expect,   if correlation  is 

high enough the sum of the values of individual  information will ex- 

ceed  the value of  joint  information. 

CASE  5:     COMPLETE  INFORMATION -   PERFECT FLEXIBILITY ON     d1 

O2 

<v|Cs1s9Fd   ,£-,. - max E(max v)  =    cl 
d2 d^ 4 

ari+2ala2^1a2+a2a2 
' T   , (3.1.27) 

alSl+a2S2 C2 
d* ^  " " -f    and    df = 0   • (3.1.28) 

The  value of  flexibility on    d^^   ,   that  is  the value  of choosing  the 

quantity of output one after  input prices  become known,   varies di- 

rectly with   the variance  of  the  cost of output one.     Retaining  flex- 

ibility on  the quantity of output one  is  a means of compensating  for 

cost changes   in  that output,   the optimum rule being  to  decrease output 

by one-half of  the net  increase  in output costs.     The value of that 

compensation ability varies directly with uncertainty in the quantity 

to be compensated  for.     The more uncertain a variable  for which we may 

compensate,   the more valuable is  the compensation.     Notice that the re- 

sult  is  independent of  the degree of interaction    q    between the deci- 

sion variables. 

CASE 6:     COMPLETE  INFORMATION -  PERFECT FLEXIBILITY ON    d« 

By  symmetry 

^ICs^Fd^g---^,    ll       12    12     2  2     _ (3 2  29) 

Comparing (3.1.27) and (3.1.29) we see that it is more valuable to re- 

tain flexibility on the output whose costs are more variable; that is, 

other things being aqual, compensation should be reserved for variables 

whose values are most uncertain.  Subtracting (3.1.27) and (3.1.29) 
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2(8,   + b^faj  + b2)oyo2 

2(.1a2 + b1b2)a1o2 

(a; + b^lo; + U^ ♦ b^lo 

FIGURE 3.4      THE SIGN OF ^ICs^Fd^.O - <viCs1Fd1d2,e> - ^iCs^d^j.O AS A 

FUNCTION OF p AND q FOR THE FOUR"VARIABLE PRODUCTION PROBLEM 
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from  (3.1.16), 

<v|c61s2Fd1d2,e>- ^|cs1s2Fd1,e> - <v|cs1s2Fd2,e> 

2 2 2 2 
q   a      +  2qra    a    +q  rr 

,        Cl Cl C2        c2 

4(1   -   q2) 

(g a1+2qa1b1+q2b2)q2 + 2[q2a1a2+q(a1b2-ha2b1).t-q
2b1b2]p^^ 

4(1  -   q   ) 

(q2a    + 2qa2b +q2b2)   2 
+ ^ ^-^ .       (3.1.30) 

4(1 -  q') 

As  a  function of  the   interaction coefficient    q     this appears  as  in 

Fig.   3.5.     Observe   that  if  there  is no  interaction between  the decision 

variables     (q = 0)   ,   then  the value of  flexibility on    cL     and    d 

equals   the  sum of  the   individual values of  flexibility on     d      and on 

d2   .     If  the  input  cost  random variables are  such  that  there  is no cor- 

relation between output costs     (r - 0)   ,   then the value of flexibility 

on  both    d1    and    d2     is  at  least as valuable as   the  sum of the values 

of flexibility on each individual derision variable.     In general, how- 

ever,   the value of  flexibility shares  that same  (perhaps  somewhat per- 

plexing)  characteristic  of  the value of information;   ^ICs^Fd d  ,£> 

may be greater  than or loss  than the sum of    «cvlCs.s Fd   ,e>    and 

<v|Cs1s2Fd2,e> .     The sign of    -"vjCs^Fd^^ -  .^ICs^^^ de- 

pends on    o    and    q    as  illustrated in Fig.   3.6.     If decision variable 

interaction is high enough, we can expect the value of joint flexibility 

to exceed the sum of  the values of individual  flexibility. 

CASE  7:     PERFECT  INFORMATION ON    s,   -  PERFECT FLEXIBILITY ON    d. 

<v|Cs1Fd1,e> ■ max    E[max    E(v|s1)] 
d2     si  dl     s2 

Ci „a 
—     n    2\   2   2 

22 222 
alal +  2ala2Pöln2¥a2p  a2 
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FIGURE 3.5      THE JOINT  VALUE OF  FLEXIBILITY  MINUS 
THE  INDIVIDUAL VALUES OF  FLEXIBILITY 
IN THE  FOUR-VARIABLE PRODUCTION 
PROBLEM 
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2(a1o1   - a2()2l(b1y1   - b^a^ 

(3,0, a202l    + (6,0, 

ai bi0i + ^Va 
(a,b2 + a2b,la,02 

2(8,6,0? + a,b o^l 
 111 272 

(•^  ♦ b^lo* +  {,32 + b^lo^ 

2(a,o,  + 82o2Kb,o,  + b2o2) 

(8,0,  + a2o2)2 + (6,0,  + b2o2)2 

FIGURE 3.6      THE SIGN OF «CvlCs^Fd^.O - <vlC51s2Fd1,e> - <vlCs1$2Fd ,C> AS A 

FUNCTION OF p AND q  FOR  THE  FOUR-VARIABLE PRODUCTION 
PROBLEM 
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CT2 

df " 2  Sl and df * 0 • (3.1.32) 

Subtracting (3.1.31) from (3.1.27), 

2 

<VICs182Fd1,e>- <V|CslFd1,e>- (l-p
2) -^ .2       (3.1.33) 

The value of clairvoyance on Sj and s2 over clairvoyance on s 

when that information may be used only in setting d1  is independent 

of the interaction q and the parameters describing process number 

two.  It is smaller the stronger the correlation 0 

CASE 8:  PERFECT INFORMATION ON s1 - PERFECT FLEXIBILITY ON d 

By symmetry, 
2 

<v|CSlFd2,e>-42 .   (1    2   i  ^2 _ ^;>2blb20^2+b
2

2p2*2 

(3.1.34) 

3-2    THE    N x M    QUADRATIC DECISION PROBLEM 

In this section we  shall generalize  the results on  the  four-vari- 

able quadratic problem  to   the case  of a quadratic  decision problem 

with any  finite number of state and decision variables.     We take  for 

our general  framework the basic  decision model of Fig.   1.4 with  the 

following additional  assumptions: 

1. The  decision variables     d       are  unconstrained,     -« < d    < « . 

2. The decision maker's value   function    v(s,d)     is a quadratic 

function  in  the    s.     and    d.     such  that  for every     s   ,    v(s,d) 

has  a unique maximum with  respect   to    d 

The decision maker's  utility  function is a linear  function of 
value. 

3. 

We may think of the quadratic value function as an approximation to 

an arbitrary smooth value  function    v(s,d)    as  follows.     Expand    vCs.d) 

in a Taylor series about  the point    o - (s0,6°)    neglecting higher order 
terms: 
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v(s,d)  - v(s,d) 

v(s   ,d  ) +        —- <v"oi)*iy 

ij 

^s   ^d 
i    j 

(si-si)(V"l)+If 

^2~ 

2 /.    ^s.^s, 

U 1     j 
(si-s°)(s.-s°) 

(d.-d0) 

+ iV   ;>r 
2 1 ^i. ^d . (^-^(d^d") (3.2.1) 

By suitably defining  the   real number    a   ,  vectors    b    and     r  ,  and 

trices    W  ,  T   ,  and    Q   ,   this may be written 
ma- 

v(s,d) =a + b,^+-^,Ws + s'Td+^,d+-^dlQd ,      (3.2.2) 

where 

_ -2^ 
i   'I v 

\s. 5d 
i  J 

, J-"!»•...n,j-1,... ,m (3.2.3) 

is a matrix whose elements measure the interaction between various 

state and decision variables, and 

h -ei. oti . 
i  J 

Jt«!,...,n,j-l,...,m (3.2.4) 

is a symmetric matrix measuring  the   interaction between   decision vari- 

ables.    Assumption  (2)  above  implies   that    Q    is negative definite. 

AN EXPRESSION FOR THE EVPIGPF 

We  are   interested  in comparing alternative  information with  flex- 

ioility  structures   in   terms  of  the maximum expected payoff  that can be 

derived   from  their use.     To  characterize  the various  structu.es we use 

the  following notation.     Let    N-{l,...,n)    and    M-|l,...,ra)    be 

the  respective  sets of state  and  decision variable  indices.     Define 

IC N    to be   the  set of  indices  of  those  stcte variables  upon which 

information  is  to be obtained,  and  let    JC M    denote  the  indices of 
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decision variables for which flexibility is available. I and J will 

denote the complements within N and M of the sets I and J, re- 

spectively.  CSjFdj "ill denote the information structure within which 

the decision maker has clairvoyance on state variables s  ,  i c I 
i 

and flexibility on decision variables d. , j R J . 

It will be convenient to take as the origin for measurement of ex- 

pected payoff the maximum expected payoff for the null system which 

provides no information nor flexibility.  Because of assumption (3) 

above, the value of an information with flexibility structure Cs Fd 

will be given by 

^Cs Fd le>" ^ICSjFdj,^. ^ip^ (3.2.5) 

Since we will be interested only in the relative values of using 

various information structures, we ignore the first three terms in 

(3.2.2).  We shall also find it convenient to measure the decision vari- 

able setting as a deviation from the best deterministic decision rule; 

that is, from the decision setting that would be optimal if state vari- 

ables were to take on their expected values. Replacing _s by E(s) 

and setting the gradient of (3.2.2) to zero, we get 

d - -Q'^T'ECs) + r] . (3.2.6) 

Defining     5d    as  the deviation from the deterministic optimum, 

d ■ d + 6d  ,   the value  function  (3.2.2) may be written 

v -  [s'-E^')] T  6d +"5   öd'Q   5d + terms  independent of     6d  . 

Thus,   there  is no loss  in generality if we  take 

v(s,d) - s'T d +-5 d'Q _d 

(3.2.7) 

(3.2.8) 

with E(s) - 0 , if state variables are assumed to be measured from 

their mean values and decision variables are assumed measured as devia- 

tions from the values that would be optimal if state variables were at 

their means. 
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In order to state the major theorem of this section we need to de- 

fine some supplemental notation.  For a given structure Cs Fd  , let 

T   denote the matrix [t..]. T . r of those elements  t.   of T 
IJ ij ieljej ij 

such that  i  is in I and  j is in J , and similarly define TMT , 

QJJ > Qj^ , etc.  T'  and Q will be taken to mean the transpose 

of T   and the inverse of Q   respectively.  Also, let _s  denote 

the vector of those components s.  of _s  such that i e I , and 

similarly define d  and d- . Then, subject to the various assump- 

tions made above, we have the 

THEOREM:  For any information-flexibility structure Cs Fd  , the 

optimal decision strategy _d*  is given by 

and the corresponding expected value of the structure is 

(3.2.11) 

where x " ECS UT^ " 

PROOF:  We first note that the expected payoff using the null structure 

is 

--vie.-. = max E(v) = max (-5 d'Q d) - 0 , (3.2.12) 
d d 

since    Q     is  negative  definite.     Therefore,   the value of  the  struc- 

ture    Cs  Fd       will  be     <v jCs.Fd 7,P'> .     Now, 
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<v|Cs  Fd   ,e> - max E[max E(vj^  )] 

(3.2.13) 

max 

whe re   _x ■ E^lsj)    denotes  the vector of conditional means.     Since 

Q    is negative definite,  the submatrix    Q        is negative definite 

also.     Taking the gradient with respect  to    d,    of the quantity 

within  the  inner bracket and setting  the result equal to zero we 

obtain 

^j ■ <jlKß*r& ■ (3.2.14) 

Substituting (3.2.14)   into  (3.2.13)   gives 

HCSjFd^O - ^{^[x'TNJQ-JjT;^].dl(Q3JQ-jTi;j.T;-J)E(x) 

Let us denote the inverse of Q by R and partition R in con- 

formity with the partitioning of Q .  Then we have 

QJJ ^JJ 

^JJ TU 

R
JJ 

R
JJ 

R
JJ ^JJ 

1 0 

0    I 

which leads to the equations 

(3.2.16) 

QJJRJJ + Q
JJ

R
J1 

QJJRJJ + QJJ
1
^ 

i , 

o , 

o , 

I , (3.2.17) 
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in which    I     and    ü    denote  identity and  zero matrices of appro- 

priate  dimension.     Solving  these  equations   for   the elements  of    R 

leads   to   the  equations 

R 
JJ 

R 
JJ 

^J 

^ 

^JJ"QJJ(?JJQJJ^ 

-O"    Q  _K     a    _R       Q   _n^ yjjvjj^ij        JJ^JJTJJ 

•«w JJ 

(Q
JJ-

Q
JJ

Q
JJ

LQ
JJ

) 
-1 

(3.2.18) 

These  relations  are  symmetric   in   that we  can  exchange  the  symbols 

R    and    Q   .     For  example,    Q^  =  ^JJ-^^J)'
1 

Using  (3.2.18),   (3.2.15)  may be written 

^KFd^O-.iE^T^T^) 

Since Q is negative definite, so is R , and therefore, so 

are Rj-j and R— . Hence, the maximization in (3.2.19) may be 

achieved  by  differentiation.     We obtain 

^-^VNJ^WNJ^) 

(3.2.20) 

Substituting   this  expression  into   (3.2.14)   and   (3.2.19)  yields 

^J* 

UJ JJ'   NJ       ^JJ  JJ  NJ 

-1 
O'lAM-  ECx)] - R^T'E^x) JM 

(3.2.21) 
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and 

<v\ChFdJ^ - " I ^'Vjfe)- ^^^T^R^T'ECx)   , 

or,   since ^  " ECSJ-UJ)   - Jj   ,     ECXj)   = 0 
(3.2.22) 

4 <% « "V-IM6^ (3.2.23) 

^J = -Qjfel  "  ^Tij^i -  ECKf)]  -  R^ E^)   .       (3.2.24) 

^ICs^,^- - iECx'T^T^x)- ^(x^T^-RllR^T-^E^) 

' - I^K^JK^'H 
TIMR

MJR^JMTlME^i)E(^)}  -(3.2.25) 

Finally,   (3.2,23),   (3.2.24),   and   (3.2.25)  may bo  put   In   the   form 

of  the   theorem using   the   identities 

RJMTiM * RJJTij + *J?TJ 

= R
JJ

(T
4J 

+ R
JXJ

T
T3) = R

JJ<
T

1J - Qjj^Tii) » 

(3.2.26) 

RJJ= ^Jj-Qjj^^j)"1 

^ = <^JJ-^AXJ)_1 

(3.2.27) 

(3.2.28) 

(3.2.29) 

QED. 

The decision problem that the theorem solves is illustrated in 

Fig. 3.7.  It is interesting to observe that a form of the certainty 

equivalence principle continues to apply.  If s    were known exactly, 
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z 
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O 
< 
D 
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O 
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the optimum setting for d- would be 

^•"V'i ' (3.2.30) 

If we replace _s by its prior expectation [O.E^)] , we get 

4 " "Wi^^i) ' (3.2.31) 

which by  (3.2.23)   is  the optimal  setting under uncertainty.    Given  this 

setting  for    d^  ,   the optimal setting  for    dj    given    s    would be 

^J " -QjiTN^ + QJJ
1T
IJ

E
0?I)  "  VIMEC*!)   • (3.2.32) 

Replacing    s    with its posterior expectation    [s-,^]   , we obtain 

Eq.   (3.2.24), 

^J " "«jfe: " QJ^Tjf^-E^)]  -  RJM^^)   , (3.2.33) 

the optimal  setting  for    d 

COROLLARY  1:     Under  the  structure    Cs  Fd 

■^j =-0  ' (3.2.34) 

dJ'"QJJTN^  ' (3.2.35) 

^CSjFdJ^ ' " h^^ß'jlv^')} (3.2.36) 

if any of  the  following conditions  hold: 
(a) E(xj) -0 

(b) J = 0  (Complete flexibility) 

(c) 1-0  (Complete information) . 

PROOF:  For condition (a) the proof follows trivially from (3.2.23). 

(3.2.24), and (3.2.25). That the reduction results for conditions 

(b) and (c) is easily deduced by reviewing the proof for the above 

theorem under each condition.   QED. 
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COROLLARY  2:     Under  the  structure    Cs  Fd 

ij-o ' 

^j - -0'jlAßi > 

(3.2.37) 

(3.2.38) 

(3.2.39) 

if any of  the  following conditions hold: 

(a) Xj ■ 0 

(b) T^ -  [0] 

(c) E^)  - 0    and    Tjj •=  [0]   . 

PROOF;     The proof follows  by direct  substitution  into   (3.2.23),   (3.2.24), 

and   (3,2.25).    QED. 

ADDITIVITY CHARACTERISTICS OF THE EVPIGPF 

For  the  following  two  corollaries  we  shall assume  in addition  that 

the conditional expectation    of   _s    is a linear function of the observ- 

able  state variables.     Condition  (a)  of Corollary  1 holds  in  this  case; 

we may generalize  two of  the results  obtained  in  the  four-variable 

quadratic  example of Section  3.1. 

COROLLARY  3:     Suppose  the  random variables  composing  the vector   jSj- 

upon which clairvoyance  is available may be partitioned  into  two 

vectors    _sT1     and    JJ that are  independent.     Then 

■■■v,,   ,.,> ie. -'V„_   ..., |e>+.^      „j |e> . 
CsiFdj CsiiFdj Csl2FdJ 

(3.2.40) 

PROOF:  By assumption, x  « E(s[sT) = Ds  for some matrix D .  Denot- 

ing the covariance matrix of j;  by C  , (3.2.36) becomes 

<V Cs rFdj|e> - - Itrace^T^Q-Jl^DC^} .     (3.2.41) 

For convenience in what follows we shall assume that the variables 
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have been ordered so that 

^n 
■2l2 

-I 

(3.2.42) 

The  independence of   ^T1     and    _s imply 

'IT 
mi 

o      c 
1212 

(3.2.43) 

D  = 

0 

I 

D-,       D, 

(3.2.44) 

where  I and 0 arc identity and zero matrices.  Similarly, with 

E(s^I1) =D
(1^I1 and E(s U^) - n(2)_si2 

><!) = 

I 

0 

D, 

,(2) 

0 

I 

D, 

.-1 ' 

(3.2.45) 

Finally, defining H ■ TNTOrTT   with appropriately partitioned 

submatrices H.. : 
ij 

^Cs^dl^-'i^^^'^lP 
■i-   ü 

■ - —traced 
I  0 Dj 

0  I D' 

1 "ll H12 "13 
I 0 CI1I1 

0 

1 

2_ H21 "22 H23 
0 I 0 CI2I2 

H31 U32 ,l33 
Dl D2 
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,     ■ ,   ■ :   -.- ■■•■•■-■->■■■■■■■'■:'■?■■' 

] 'i 

-jtrace [H11+H13D1+D;<H31+H33D1>]C im 
■'[H22+H23D2+D2(H32+H33D2)) 1212 

(3.2.46) 

scSllPd/>--2lt"«{D(1),ra'(l>cim} 

.-itrace{[H11+H13D1+D;(H31+H33Dl))I1I1}    ,   (3.2.47) 

|e>.-|trace{D<2),HD<2>Cm2} 

" " it,raCe{["22+H23D2+,>2(,132+H33D2)]CI2I2} •     <3-2-4«) 

(3.2.40)   follows  from a comparison of (3.2.46),   (3.2.47),  and 

(3.2.48).       QED. 

Csi2FdJ 

Following the example of Section 3.1, we say that decision vectors 

^32 dJl    and dJ2 do not interact if the value function may be expressed as 

vCs^j1.dJ2,d3) - v^^dj) + v2(s;dJ2,d3) .     (3.2.49) 

COROLLARY 4:  Suppose the decision variables composing the decision 

vector dj    for which flexibility is available may be partitioned 

into two vectors d^ and dJ2  that do not interact. Then 

<V. 
CsIFdJ 

,P>-<VCsTFdT   !^>+^CsFd     !e>* 
I    Jl I    J2 

(3.2.50) 

PROOF:  For convenience we assume decision variables are ordered so 

that 

-dJl 

dJ2 

_^_ 
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For the quadratic value function, the non-interaction assumption 

means that the matrix Q T has the diagonal form 

fJJ 

fJlJl 

0   «| 

0 

J2J2 

(3.2.52) 

Then using (3.2.41), 

^CsFdJ^ —trace {D,[TNJ1' TNJ2] J1J1 
0   Q 

0 

-1 

J2J2 

NJ1 

NJ2 

^II} 

^trace(D'TNJ1Q-1
1
J1Ti;jlDCII) 

-rtrace(D,T  O"  T* DC ) 
2    v  NJ2\J2J2 NJ2 ir 

^slMjll«>^cSlFdJ2le> • (3.2.53) 

QEI>. 
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CHAPTER 4 

QUANTIZED INFORMATION AND DISCRETIZED DECISION SYSTEMS 

In Section 2.3 the topic of evaluating imperfect information given 

partial flexibility was discussed.  That discussion might have led the 

reader to pi^sume that a decision maker would never prefer to use im- 

perfect information or partial rather than complete flexibility in his 

decision model.  Quite to the contrary, perfect information will typi- 

cally be evaluated as if it were imperfect quantized information, and 

complete flexibility will usually be treated as if it were only partial 

discretized flexibility. 

The reason for this is that quantization of information and dis- 

cretization of decisions can provide the simplification necessary to 

reduce a complex decision problem to a computationally manageable 

size.  The application of this principle is so common that it is likely 

to be taken for granted.  Information is usually expressed numerically 

or otherwise categorized and, therefore, by necessity it is "rounded 

off." Similarly, our decisions are frequently constrained to be some 

multiple of a common number or unit:  dozens, cases, minutes, etc. 

Quantization allows us to reduce an infinite number of possibilities to 

a finite number with which we find it easier to deal. 

By the same principle, if the decision analyst treats his contin- 

uous or many-valued state variables as if they were roughly quantized, 

and his continuous or many-valued decision variables as if they were 

crudely discretized, he can frequently achieve an enormous simplifica- 

tion in his decision model.  For this reason, information and flexibil- 

ity will typically be accounted for by artificially quantizing state 

variables and artificially discretizing decision variables in a very 

rough manner. 

The purpose of this chapter will be to investigate the consequences 

of introducing quantization into a decision model.  The first sections 

address the issue of quantizing continuous valued state variables; the 

latter section, discretizing continuous decision variables.  Our objec- 

tive here is by no means meant to be a thorough investigation of 
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quantization in decision analysis.  Rather, we address the problem more 

as a necessary side issue of our study of the value of information- 

floxibility structures. 

4.1 STATE VARIABLE QUANTIZATION 

We begin by considering once again the basic decision model of 

Fig. 1.4.  If the value of the state vector _s was anticipated to be- 

come kiiown to the decision maker prior to his setting of the decision 

vector d , the utility of the decision problem (before ^ is revealed) 

and the optimum decision strategy are found by solving the functional 

optimization problem 

<uje> ■   j" max <u[s,d,e> r^|e]  . (4.1.1) 
_s s ?  d ^D 

Solution of (4.1.1) yields an optimal decision function .d*(-) which 

maps the state space  S  into some subset of the action set D . Cal- 

culation of such a decision function is necessary in problems for which 

optimization after the receipt of information is impractical or in prob- 

lems for which the setting of the decision vector d conditional upon 

_s  is part of the evaluation of a larger decision strategy. 

For several reasons, however, the functional optimization indi- 

cated in (4.1.1) is rarely performed in practice.  In many cases be- 

cause of accounting problems, the precise value of js will not be 

reported to the decision maker.  Rather its value will be rounded off 

to a more convenient number.  In other situations  the functional opti- 

mization required in (4.1.1) may be too difficult to perform;  it 

will be far simpler to execute the optimization in a decision tree in 

which the distribution of j> has been approximated by a probability 

mass function.  Thus, we often find that practical matters lead us to 

quantize a random variable. 

State variable quantization in decision models is usually accom- 

plished by artificially concentrating the continuously distributed 

state variable probability mass on   certain discrete points chosen 

within the state space S . This, however, causes some problems. Af- 

ter the decision strategy has been formulated and it comes time for the 
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INFORMATION DECISION 

SYSTEM  REPORTS MAKER  SETS 

s d 

lal  COMPLETE  MODEL 

UTILITY  OF 

OUTCOME 

<ui$.d,e> 

UTILITY  OF 

OUTCOME 

<ul5,d,f > 

INFORMATION DECISION ACTUAL  VALUE 
SYSTEM  REPORTS        MAKER  SETS OF  s WITHIN S. 

*S. 

Ibl  SIMPLIFIED MODEL 

FIGURE 4.1      COMPLETE DECISION MODEL AND SIMPLIFICATION 
RESULTING FROM QUANTIZATION 
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decision maker to set d according to an optimal decision strategy 

d*(-) , the observed value of _s may not even correspond to any of the 

discrete IJVJIS for which the decision rule was calculated.  In 

such situations, the decision maker is likely to use the optimal deci- 

sion setting corresponding to the "closest" quantized level.  We forma- 

lize this last thought by imagining that a partition PN ■is.l N,  has 
1  I iji-l 

been formed on the set S of possible states of Nature.  The action of 

the quantized information system is such that if ^ e S. , the index i 

is communicated and made available for the decision process.  Correspond- 

ing to each subset S.  the decision maker must find the decision set- 

ting _d*(i)  that maximizes the expected utility given only that _s e S.- 

The complete decision model and the simplification achieved through 

quantization are illustrated in Fig. 4.1.  Notice that not only has the 

information system been simplified, but specification of the optimal 

decision strategy requires only the specification of the N vectors 

d*(l) ,. . . ,ji*(N) , not the specification of a vector of functions d*(-) 

on S .  Specifically, if _s e Si  the optimal decision setting maximizes 

the conditional expectation 

<u|s eSi,di,e>- J <ul_s,d,e> rs|_s G S^g] ,  i-l,...,N , (4.1.2) 

where 

SPS". 
— ' i 

[s\e} 

^ * V^ " fs s s. |71 ' ^ e ^ (4.1.3) 

is the conditional distribution of j given that s  lies in subset 

S.     and 
i 

is e s.ie] -     J [sje] (4tl.4) 
S5S 

—     i 

is   the probability   that    s     lies   in    S.   .     Hence,   to  the partition    PN 

and given model   |s,D,[s|ß],v,ul   will correspond an expected utility" 

N N 
i   N ' ' - 
|Ps,e>-    ^ 15 eS.jP] <-uLseS.,F>-    J    max f <u Ls,_d,e> [,; le} 

i-1 i.i  deD seSi 
(4.1.5) 

,_N 
<u 
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EVALUATING A QUANTIZING SCHEME 

Suppose that quantized information may be purchased at a price 

p, .  If  u|P^ is the expected utility given no information on _s , 

and OalP ,p1»ß> is the expected utility given that the quantized in- 

formation system is purchased at a price p^ , we define the price p^ 

such that 

<u|PN,p1,5> - <u|e> (4.1.6) 

N N 
to be the value of the partition P  and denote this value by l'(P ) . 

Similarly, suppose that complete (exact) information could be purchased 

at a price p„ , and let <u|Cs,p2iC> denote the maximum expected util- 

ity if this purchase is made.  We define the price P2 such that 

<ulCs,p2,''> « -u|PN)P> (4.1.7) 

as the loss associated with using the particular quantization scheme 

P  .  We denote this quantity by £(?!:) •  u(Pc) may be interpreted as 
S DO 

the maximum amount of money the decision maker would be willing to pay 

for the use of the quantized information system.  We interpret f(P:;) 

as the economic loss a decision maker with a complete information sys- 

tem would have to sustain to make him indifferent between retaining it 

(the complete information system) and accepting instead the quantized 

system. 

The number of subsets N comprising the partition P  determines 

the level of quantization.  Several possible levels of quantization are 

illustrated in Fig. 4.2.  Notice that for N ■ 1 we have the situation 

of Fig. 2.1, and the loss of the quantized system is just the value of 

perfect information on _s given perfect flexibility on _d .  As N 

goes to infinity the quantised system approaches the complete model in 

which information and flexibility are available.  Thus, the decision 

models with and without flexibility can be thought of as the two ex- 

tremes of a collection of models which piece-wise approximate the op- 

timal decision strategy over the state space. 

Because calculation of the optimal strategy for the quantized 

model is, in principle, easier than that for the complete model, two 
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<uip.e> 

max 
d 

N  =   1 

/ <«i!.d,e>|.ie|       Q- 
S.S 

max 

d. 
/    <ul$.d1li>i$ie> 

icS 

/   <ui5,d,i;> -Jsifi 

N = 2 

max        /     <ul5,d,i;> {%\f 

?2       «S 

jiiies2.ej 

V,   max       /     <ull,d,.e> <|IP> 

^        KS 

I    max <uls,d.P.> }t\e.> 

FIGURE 4.2      DECISION  PROBLEMS  FOR  VARIOUS LEVELS OF  QUANTIZATION  N 
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COMPLETE MODEL 

COSTS PRICE, DEMAND 
QUANTITY     PARAMETER 

jciej 

vo    Vi 

SIMPLIFIED MODEL 

p,q loc^o.yj.el.j.iej 

(clcf[v),y2],c|,|eicj 

ldct[vN-iVN]-ej.|B|e( 

QUANTIZED PRICE, DEMAND 
COSTS QUANTITY      PARAMETER, 

ACTUAL 
COSTS 

QUANTIZING 
PARTITION 

Y v N-1      yN 

0 1 

FIGURE 4.3      COMPLETE MODEL, SIMPLIFIED MODEL, AND QUANTIZING PARTITION 
FOR THE  ENTREPRENEUR'S DECISION 
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Differentiating to perform the maximizations we obtain the decision 

rule 

2a-y1-2pb 
,* i  

2p 

2a-(l+y1
-)-2pb 

■t-v 8b+4 

.  P- 

4a(l+yI)-(l+y1)' 

8b4-4 

(4.2.2) 

(4.2.3) 

and a corresponding maximal  expected payoff of 

b        V2b4-1 vV2, ^|p;(y1)>e>. a +| ^ -^HtL. r(4a-y1)V2
yf

2
+(4a-l-y1)1/Z(l-y1)] . 

(A.2.4) 

Notice that for yj^ " 0 or Yj^ = 1 , Eqs. (4.2.2), (4.2.3), and 

(4.2.4) reduce to Eqs. (B.4) and (B.5) of Appendix B.  This makes sense 

when we interpret the latter equations as corresponding to a one- 

partition quantization of co.sts. 

If the organizer sets y^ « 1/2 , the state space is partitioned 

in half and the maximum amount of information is conveyed by the quan- 

tized information system.  In this case, plugging  y. = .5 ,  a «= 2.25, 

and b ■ .5  into (4.2.4) gives 

<v|P ,e> - $585,277 , (4.2.5) 

which  is   $85,139 better   than  if no   information on  costs   is provided, 

and  $54,139  short of   the  value produced with  the  complete  informatio'- 

system.     However,   from  (4.2.4)  we  see   that  the  best  two-state  informa- 

tion  system  is  obtained  by  choosing    y-^     so  as   to minimize 

(5-y1)
1/2y1

3/2.(8-y1)
l/2(i+y1)

1/2(!-y1) (4.2.6) 

The value of    y^     that    minimizes  this expression   is  approximately 

yi 0.35165 (4.2.7) 
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Thus, the best two-level quantizing scheme for a strategy contingent 

only on the information "costs are high" or "costs are low" would be 

achieved by defining costs as "high" or "low" according to whether or 

not they exceed $351.65 per unit. Plugging (4.2.7) into (4.2.4) we 

obtain the maximum expected payoff if a two-partition information sys- 

tem is used for costs: 

^V^max- !?592'328 (4.2.8) 

N-LEVEL QUANTISATION 

Define    yQ " 0    and    yN - 1    and assume  that  the  information sys- 

tem quantizes  the cost variable    c    into    N    intervals  the i^ of which 

is bounded by  the points    y^    and    y^^  .     If the  information system 

reports only the interval into which costs  fall,   the expected payoff 

will be 

<v|P^yr ,yN-l ),e> 
N 
V" 

t 

i-1 

max max 

yi   i 
X    cj      ej <v|P'q'c'e'e>^l?} 
1   y.-i   o 

[cle] 

(4.2.9) 

Differentiating as  in  the  two-level case we obtain expressions  for the 

optimal prices and quantities and the corresponding expected payoff. 

P*. 
i 

4a(y.fyi+1)-(y.+ym) 

8b+4 ~     '     qi 

2a-(yi+yi+1) 

2?J b  ,     (4.2.10) 

-N 
<v|Pc(y1,...,yN.1),e> 

i-l -l 
(4.2.11) 

Due to the assumed linearity of the decision maker's utility function, 

the economic loss from using such a quantizing scheme is 

iJ(p^) - <v|cc,e>- <v|p^(y1 yN.1)»e> . (4.2.12) 
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Table 4.1 consists of numerical evaluations of (4.2.10) and (4.2.12). 

The calculations were made with a ■ 2.25,  b « .5  for equal interval 

partitions and for the optimal quantizing partitions for several lev- 

els of quantization N .  Figure 4.-', shows a plot of quantizing loss 

versus the number of quantizing levels N for the two quantizing 
-2 

schemes.  Notice that quantizing loss falls roughly as N 

4.3 QUANTIZATION IN THE TWQ-VARIABLE QUADRATIC PROBLEM 

In this section we shall explore the effects of information quan- 

tization on a two-variable quadratic decision problem of the form in- 

troduced in Chapter 3.  For such decision problems we are able to 

determine necessary conditions that an optimal quantizing partition 

must satisfy and to evaluate the effects on quantizing loss of using 

various levels of quantization and various suboptimal quantizing 

schemes. The results are of interest because, as stated in Chapter 3, 

the quadratic function is frequently a good approximation to a complex 

value function. 

Consider the simplest quadratic decision problem in which there is 

a single state variable s and a single decision variable d . We 

assume that the decision space D is the real line R and the state 

space S  is a segment of R .  The value function is assumed quadratic 

in s and d and for every s  to attain a unique maximum with re- 

spect to d .  Then, according to the argument of Section 3.2, by 

suitably defining origins there is no loss in generality in assuming 

v(s,d) - tsd +^ qd2 (4.3.1) 

2 
with E(s) " 0 , Var(E) - a , and q ■' 0 . 

Our decision maker is assumed to be risk indifferent so that 

basing his decisions on expected payoff is equivalent to the criteria 

of expected utility.  We suppose that, for i;he aid of the decision 

maker, a quantized information system has been instituted which in- 
N  f  1 N 

duces a partition P "1 ^- r -^.i on t^16 region S .  The maximum ex- 

pected payoff which can be attained using this information system is 
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ENTREPRENEUR'S  DECISION 

■75- 



l'-ll ■    I     II **r******mmmmmm ..«wipwiwf^wwpp^^BWiiiifl^^MnHP^R'Twwwppi^^wrflw^m^ 

-|PV Elmax E[v(s,d) |seS]} 
i '  di 1 J 

N 
v" i        2 

)   Pi maxftdi E(s|seSi)f-s  qd   ]   , 

i-1 

(4.3.2) 

where    P.     is   the probability   that    s     falls   in    S.     and 
i i 

N 

I 
i-1 

P.   - 1 
L 

Differentiating  in order  to   find   rhe maximizing    d.   ,  we  obtain   the 

decision  variable  setting  the  decision maker ought  to use  if he  learns 

that    s     falls   in     S.   , 

di " " "^l56 Si)'   i " 1."-.N (4.3.3) 

Substituting  this  into  (4.3.2), 

N 
<vips'e>" ■ h 1 piE(sise s

iy 
i-1 

(4.3.4) 

Defining V.  as the conditional variance of s given that s  falls 

in S. , 
L 

V. - E(s2|s. S.) - E(sjse s.)2 , (4.3.5) 

we have 

.-.1P> 
2 N 

Tq   l^iHs^s.s.)-  v.] 
i-1 

2 N 

t_ 2 / 
2q i1-^ IVi) 

i-1 

(4.3.6) 

From (3.2.39) we see that the term in front of the expression in the 

parentheses is just the value of clairvoyance on s: 
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I 

t2    2 ll(Cs) ■ - 2^ cT . (4.3.7) 

Finally, since the expected payoff given no information on s is zero, 

the value of the quantizing system equals the expected payoff; 

ü(Pg) -UCCsKl-L^ , (4.3.8) 

where 

N 

Ll-4 )>iVi • ^•3-9) 
a i-1 

In view of the above, we see  that choosing the quantizing system 

so as  to maximize expected payoff is equivalent  to solving the extremal 

problem defined by 

N 

inf I P.V-   • (4.3.10) 

"i g   S.,-S       i-1 
i-1 

Equivalent forms of problem (4.3.10) have appeared in several papers 

dealing with grouping problems with different objectives of the group- 

ing [2,3,4]. 

OPTIMAL QUANTIZING PARTITION 

It is a simple matter to derive the optimal quantizing partition 

if we return to Eq. (4.3.4). From (4.3.10) It should be intuitively 

clear (and it is easy to prove) that the optimal partition consists of 

a breakdown of the space S into connected intervals. Therefore, let 

the regions Si be the segments  (y^i.Yji) with y0 < y, <...<: yN , 

where y0 i.nd yN are respectively the (possibly infinite) initial 

and fiiuu points of the region S . Then .f f(s) - (s|e] is the 

density function describing the distribution of s , 

2 N A2 

^^--Iq I?;  • (4.3.11) 
i-1 1 

where 

-77- 

  ——  ■ ■ --■ ■■— --"^ 



—•••»»—•—. 1 I I 

Ai= 

v1 s   f(s)ds   . (4.3.12) 

If we  wish  to maximize   (4.3.11)   for   fixed    N  ,  we  get  necessary condi- 

tions  by differentiating with  respect   to  the    yj     and  setting deriva- 

tives  equal   to  zero.     The   terms  of   the  sum  involving     y.     are 

A2 

^ + - + 1 I i+l 

i+1 
(4.3.13) 

Differentiating, 

2 
2A. i+l       i+l 

i+l" öy^ 

A2   :.P. 
1  1 

p2  9yi 

A oP 
i+l      i+l 

i+l 

1      1+1   ^ i     ri+l -1 

Noting   that 

<s !yi-l   - s   < yi'f> ' (4.3.15) 

then,   since     f    is  nonzero on    S     and   the optimal partition  consists of 

contiguous     intervals,   (4.3.14)   implies   that 

yi  -i^bi.!   •' s   .-y.,F>+  .-s|y.   •   s  < y e>)   . (4.3.16) 

Thus     for  the  two-variable  quadratic  decision problem,the  optimal par- 

tition  is   independent  of  the parameters  of  the value   function  and  is 

such  that partition boundaries  are   located half-way between   the  condi- 

tional means of  the neighboring partitions. 

If is  unimodal   the   solution   to   (4.3.16)   will   be   unique. 

Otherwise,  all  the  critical points must be  calculated   in  order  to  iden- 

tify  the partition   that    maximix.es   (4.3.11).     Except   for   trivial 

distributions,   solutions   to   (4.3.16)  will  have  to be  determined using 

some  sort of  iterative   technique.     Table  «.2 gives   the  optimal partition 
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boundaries for the normalized uniform, exponential and normal distribu- 

tions.  The normal results were obtained in another context by Cox [3]. 

Data for the other distributions were calculated from the results of 

the following two examples. 

Example:  Uniform Distribution 

Suppose that s  is uniformly distributed.  Then 

<s|y 
i-1 s < y.,e: 

y- T + y- i-l  'i 
(4.3.17) 

Substituting into (4.3.16) and solving for y., we get 

.. .yi-l + yi+l 
(4.3.18) 

Therefore, the optimal partition for the uniform distribution is ob- 

tained by equally spacing the y. . 

Example:  Exponential Distribution 

For the exponential distribution 

f(s) s > 0 , (4.3.19) 

we have 

■^yi-l  S 

yi 
'  s e "ds 

-s 

yi,s,- 'i-i 

r 
e ' ds 

y-e ^-y. .e ^ 

p'
yi  ^i-l e  - e 

i-l 

Substituting  into  (4.3.16), 

(4.3.20) 

yi "2 2 + - 
v /yi "yi-l yie      "  ^i-l0 

■yi      ^i-l e      -  e 

— + 
yi+l

e 
■yi+i      -yf 

" yie 

•yi+i e .  e 

With a  little  algebra  this may be  expressed as 

(4.3.21) 
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yi-  yi.l [l-e ^i^i-P 1 +.JÜ  i_ 
-^yr3TOTj-    ^3"22) 

Consider first  i -= N-1 and observe that yM = a  .  Then, (4.3.22) 

becomes 
'N 

yN-r  yN-2       r "(yM_i"yv-o) [l .  c   ^N-l  -N-2^ 
(4.3.23) 

Plugging    i = N-2    into  (4.3.22)  and  using   (4.3.23), 

N-2     rN-3       f, ■(yN-2"yN-3)' 
"2 

(yN-ryN-2) 

^yN-2"yN-l) 
l-e 

Fl -  e'^-Z^N^I yN-r   y^2 
L J      2 (4.3.24) 

Using (4.3.22), (4.3.23), and (4.3.24) WP can calculate Che optimal 

imple, if 

-(y2-y1) 

optimal y. 

for various values of N .  For example, if N - 3 , (4.3.23) becomes 

y2- y1 

[l ]• (4.3.25) 

which has   the  solution    y2 " yi "  1-3936   .     Then using  (4.3.24)  and  the 

fact  that    y    ■ 0   , 

1 .. n         ->'1N   1.5936 "2 - (1 - e      )  r- (4.3.26) 

which yields    y1  »  1.0176   ,     y2  ■ 2.6112 

DEPENDENCE  OF QUANTIZING  LOSS  ON QUANTIZATION SCHEME 

From  (4.3.8)   and  the  assumed   linearity of our decision maker's 

utility  function,   the  quantizing  loss  associated  with  the partition 

■WA is  given by 

i'(Ps)   = c (Cs)   •   Lj (4.3.27) 

The  quantity    Lj     defined  by  (4.3.9)   is  a convenient measure  of the 

losses   introduced   into  the problem due   to  quantization.     It  is of 
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interest  to  ascertain  the effect of  the  number of levels    N    and of 

departure;    from  the  optimal partitions  on quantizing  loss.     Consider 

the  case  of a uniformly distributed    s   .     Using  (4.3.18)   in  (A.3.9) 

N 

2I 
^■ri      ^    t*1'*2 

(4.3.28) 

We  should expect  approximately  this  sort of  dependence  in general.     In 

fact     if    N     is  relatively large   the probability density does  not vary 

much  from one  end of a partition  to  the  other and  is well approximated 

by a density   function whose magnitude over each partition  is a constant 

equal  to   the mean of  its  values at  the partition end points.     If  this 

is   the case,   the  best way of partitioning  to  a  level    2N    is  to divide 

each partition   in half;     it  is easy  to  see     that  this will    result  in 

a value  of    1^     for    2N    partitions,  which is    1/4    the value   for    N 

partitions. 

In Table  4.3  values  of    1^    are  given  for  the  three  distributions 

under  their  respective  optimal partitions  and under equiprobable parti- 

tions.     Notice   that,although  the optimal partitions   for  the exponential 

and normal  distributions  differ considerably   from equiprobable parti- 

tions,   the   latter perform well,   indicating  that  the  function    L.     is 

quite   flat  in  the  neighborhood of  its minimum.     This  is a  fortunate  re- 

sult as   it   implies   that  the optimal quantizing partition need not be 

specified   too precisely.     A plot of  the minimum    1^    versus    N    appears 

in  Fig.   4.5.     Notice   that    L]     decreases   rapidly up  to about    N *  3   . 

Beyond  three  quantizing  levels a unit  increase  in    N    causes a relatively 

small decrease   in    1^   .     This  tells  us   that most of  the value of  infor- 

mation  can  be  obtained  by  using  rough quantization  to as   few as  three 

levels. 

A GRAPHICAL TECHNIQUE  FOR DETERMINING THE OPTXMAL QUANTIZING PARTITION 

We discuss  here a graphical method  for obtaining  the optimal quan- 

tizing partition   for  the  two-variable  quadratic problem given an arbi- 

trary prior  distribution     f  . 

At  the heart  of our method  lies a  technique   for quickly and 

accurately approximating  the mean    x    of a real valued continuous 
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NORMAL  DISTRIBUTION 

EXPONENTIAL  DISTRIBUTION 

FIGURE 4.5      OPTIMUM QUANTIZING  LOSS FACTOR VERSUS NUMBER OF QUANTIZING 
LEVELS FOR THE QUADRATIC PROBLEM 
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random variable x .  Wo suppose tliat  x  is descrihod by a cumulative 

distribution function C and corresponding probability density func- 

tion g which is zero outside some (pos. ible infinite) range  (a,b) . 

Then 

rb r0 
I  xg(x) dx +  I  xg(x) dx . (4.3.29) 

Substituting 

fdo da    , 
O1 x' 

we  can  replace  the  single   integrals  by  double  integrals, 

(4.3.30) 

b  x 0  0 
X ■  |     g(x) dydx -    I 

0  0 a,J  x 

Reversing the order of integration, 

g(x) d"ydx (4.3.31) 

b  b 0  a 
f \ I g(x) dxdof -       g(x) 

O" or] a" a- 

P ?0 
fl - G(o/)]  da -  1 G(>) da 

0'- afc 

dxd^ 

(4.3.32) 

Equation (4.3.32) states that the mean is equal to the area lying be- 

tween the cumulative distribution function and unity in the range 

(0,b)  less the area under the cumulative distribution function in the 

range  (a,0) .  If we now translate the axis to the right a distance 

d --that is, we define a random v-arlable  x' ■ »d --and choose d so 

that the difference between the areas is zero, we must have x'« x - d 

* U , or  d » x .  This shows that the mean of any real valued con- 

tinuous random variable x is that point on the x axis for which a 

vertical line through the point is such that the area to the left under 

the cumulative distribution function is equal to the area to the right 

that  is between the cumulative distribution function and unity. 

Return now to the problem of approximating the optimal quantizing 

partition.  Working on a plot of the cumulative distribution function, 
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wo begin by guossiiif, a value fot y,   Th« conditional mean of the 

region partitioned by  (y^y,) , whuh we denote in Fig. A.6 by x, , 

i.s now estimated using our graphical Leclmique.  When x,  is properly 

positioned at the conditional mean, the areas of the shaded regions 

K  am! K'  will .»o equal. 

Next, a distance y. - x.  Lfl narked off to the right of the 

point  y, , am! the resulting point i:; called x  .  If y   is placed 

so as to satisfy (4.3.16),  x0 '..ill be the conditional mean of the 

region  (y.,y0), and wo can use the fact that the areas R„ and R* 

must be equal to aid us in placing v2  • Continuing with this method, 

all the boundary point  through >'  ,  may be placed.  Finally, if y, 

was chosen correctly, then the point       will be at the conditional 

mean of tin. region (v., , ,v.r) N- 1   " N If    x,.  ,     it  too  far  to  the  left 
N- I 

[right], then the process must bo repeated using a larger [smaller] 

value for y, 

4.4 DECISION VAHIARLK DTSCRETIZATION 

Just as practical matters often lead to a quantization of the 

state space, they may also require us to restrict the feasible deci- 

sion set to a class roprcsentable by a finite set of pirameters. 

Again the reasons for this are primarily technical.  Numerical expres- 

sion of an optimal decision strategy inherently results in discretiza- 

tion. Al'io, the optimization can frequently be greatly simplified if 

it is performed in a decision tree which limits the possible decision 

set:ings to some small finite number.  In fact, use of a digital com- 

puter by its very nature requires discretization of all continuous 

variables. 

We are led, therefore, to the problem of choosing the class of 

alternatives to which our solution shall be restricted.  As with state 

variable quantization, the key point to bear in mind is that the reduc- 

tion in complexity to be obtained through rough discretization of the 

feasible decision space is obtained at a price of a reduction in per- 

formance.  Let us pursue this topic by once again considering the two- 

state quadratic problem. 
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*■ 5  DISCR£rrZATH)N [N HIE TWO VARIABLE QUADRATIC PROBLEM 

Wo assume that our decision maker is faced with the two-variable 

quadratic decision problem described in Section 4.3.  His state of in- 

formation is S .  We wish to know what economic loss will result if 

the decision maker uses the simplified model of Fig. 4.7 in which the 

infinite daeision spare D of the complete model is replaced by the 

set of points -id.,... ,d L . 

Let  d* denote the optimal decision setting for the complete 

model and let  IK - ^J .^  bo the discretization of the decision 

space.  Any discretization which contains d* will, of course, result 

in zero loss.  However, we presume that at this poittt in the modelling 

process d^v is not precisely known.  Let  i (D^)  denote the expected 

loss in payoff corresponding to the discretization M 

pans ion. 
>, .  Then, by ex- 

EOft 
Mr .-  Probability  d«  is 

chosen optimal by 
Expected loss if d/ 
is chosen optimal 

.^ Ijsimpl ifiod model  _  l_by simplified model 

In the present case, the maximum expected payoff 

.(4.5.1) 

max v |d,g 
d 

-f^csisr (4.5.2) 

COMPLETE   MODEL 

DECISION 
MAKER'S 
STATE   OF 

INFORMATION 

BECOMES   3 

<vid.8^ 

DECISION 
MAKER   SETS 

<UÜ       H 

SIMPLIFIED MODEL 

d. 

DECISION 

MAKER'S 
STATE  OF 

INFORMATION 
BECOMES g 

j        <vid,8> 

DECISION 
MAKER  SETS 

d'jVA4 

FIGURE 4.7      COMPLETE  DECISION MODEL AND SIMPLIFICATION  RESULTING 
FROM  DISCRETIZATION 
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is Achieved with 

«!♦•- J E(s|g) (4.5.3) 

Dofininp 6*   ■ d - <J* as the deviation from the optimal decision set- 

ting, 

'v|d-d'+d*,g. - - i 1- E(s|S)2 +i qd'2 . (4.5.4) 

Thus, the expected loss in payof ' if the decision variable is set to 

d.  is 

v|d*,i> - v\6.,% '* - i  q(di - d*)2 . (4.5.5) 

Now let us explore the behavior of the simplified model  If 
, I M   •  u    . 
if i»l  IS t  existing discretization, which setting d.  will the 

simplified model choose as optimal? Suppose again that d* is the 

optimal decision in the complete model.  We will determine the value 

of d* , say *. , for which the simplified modol is indifferent be- 

tween alternatives  d.  and d. . .  Setting 
i-       H-l        • 

or using (4.5.5), 

<vld.,g ■ cv|d 
i+1 »a (4.5.6) 

"2 q^- d*) 1  9<dM- d*)2 (4.5.7) 

we oh tain 

d* 
d.+ d.Al i  i+l 

(4.5.8) 

Thus, t\i  simplified quadratic model chooses the disrretized decision 

setting that lies nearest the true optimal value. 

We may now write mathematical expressions for each term on the 

right-hand side of (4.5.1).  We assume that the decision analyst has 

through some means derived a prior distribution  {d*|g] on the opti- 

mal decision setting d* for the complete model.  Then the a priori 

-89- 

  



r 
prolMblllt)   that   decision     d.     will   bo  chosen optimal  by   the   simpli- 

f Leii mode 1   i s 

il.+d.   , i     i+1 

P.   . I [d*IS]   ,     1   =   1,...^, (4.5.9) 
1 

1-1     1 

•nd   the  oxpoLted   1O;JS  eiven   that     d.      is  chosen optimal   is 

■;.+d._Ll 

P J 

i§- (u.   -   d*)-   [d*H1   ,   i  -  1,...,M   ,     (4.5.10) 

i-1    i 

where d  ami iL^  are defined such that (6^6^/2  - a ,  C^+^i+l^ ^ 

= b and  (a.b;  Is the range over which  [d*)f]  is defined.  Using 

the above, (4.5.1) becomes 

d.+d. . 

«(DM) - - -^  ^ (d.- d*)2 (d*|t) .      (4.5.11) 
d        - :- d. 1+d'. 

i-i   t-i   i 

A SPECIAL CASE 
r 1 M 

Before turning to the question of how the discretization -jd.^ ^ 

sfMNlld be chosen, we shall present a special case that appears to be 

an analog to the quantization problem of Section 4.3.  Suppose that the 

uncertainty in d* arises because the particular value that  s ob- 

tains is not yet known.  This would be the case, for example, if the 

discretized model were being designed to be used repeatedly for a number 

of independent trials.  Then, since for the complete model 

d* - - - s , (4.5.12) 

if | ■ 6 and  [gjei - f(s) , 

<d*|g'. »f «(-«f «**) • (4.5.13) 
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In  this  case,   (4.5.11)   bocomes 

M 1     L+1 

f<V "ft ('i.-d*)2 f(- -9 <!*) dd* . (4.5.U) 
.   ,  d.   .46] l t 

i-l    1-1    1 

Defining  the change  of variable     s* » -  qd*/t    and  letting    s.   - -qd./t 

this may be written 

M l     141 

M 2   r - 2 

^ (Dd)  " ' IE I (s,.-s*)   f(s*)   ds* i'      'TA   I I (s  -s*)   f(s*)   ds*  . (4.5.15) 
"   s.    -^■s•. 1 

i-l     i-l     i 

From (3.2.39)  we  recognize  that  the  term  in  front of  the  summation  is 

the  value of  flexibility on    d    divided by  the  variance of    s 

2 
-(Fd)  . . |_   ,2   . (4.5.16) 

Hence, 

iJ(D^)  -  .(Fd)   •   L2   , (4.5.17) 

where 
s.+s.   , 

L2 ""2    ^ f (s.-s*)2  f(s)   ds   . (4.5.18) 

i-l     i-l     i 

OPTIMAL DISCRETIZATION 

In view of  (4.5.11),  we will  have  an optimal  discretization of  the 

decision  space  if we  choose  the     dj     so as   to minimize 

d.+d     , 

1     M -4^ 
L2m~2    I \ (d-d*)2   {d*|g}   . (4.5.19) 

i-l     i-l     i 
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wo obtain ■ sot .-f ii.    ■ • iry condition)   for the optiMl    d. 

o    d.    and setting  th« result  to zero. 

!• 1- 
d. ,+u 

I 1-1  1 
!■' .+U . 

(i*  .' -,S > , i - 1 ,. . . ,M (4.5.20) 

Iho .ptinal discMtitation point!  d.  ire the condition«! moans of 

partitions whose boundariei are located halfway betwoen the conditional 

neap.-, of the nalghborinf partition!  Thil Li precisely the condition 

satisfied by the conditional mean-, of the optimal quantizing intervals 

defined by (4.3.16)!   Therefore, ; lie same procedures used in Section 

4.3 for calculating good cant Irin, intervals may be used to calcu- 

late pood discratlalni scheme;,.   In particular, the graphical tech- 

nique is useful.  The onlv difference between the two problems, of 

course, is that in the case of state variable quantizing it is the boun- 

daries, the  y.  in Fig. 4.6, that are important; in the case of deci- 

sion discretisation it is the conditional means, the  x. , that are 

important. 

Table 4.4 gives the optimal discretislng points for the normalized 

unlfonr, exponential, and normal probability distributions.  Table 4.5 

gives values of  L2  for the three distributions under their respective 

optimal discretizations and for the equiprobable discretization in 

Which ProbCd.^ - d* < d.) - l/M for all  i , and Prob(d* - d^ - 

Prob(d* ><y - 1/2M .  The entrios in the first column are identical 

to those of Table 4.3 since in the optimal case the expressions for 

Lj^  and  L,,  each reduce to 

M 
1 

mm L. ■ nun !,„ ■ —r  > 

i"l  i-I 

(x - <xIx. 
i-l 

where 

xi,g^)
Z [sji] , 

(4.5.21) 

Oc x 
X . 

L 

i*l X'Xi " X ^i+l'
S~ 

, i - 1,...,M .(4.5.22) 

We reach the same qualitative conclusions about the behavior of L, 
S 

as we did about 1^ .  The function has a flat minimum indicating that 

optimal discretizations need not be precisely specified.  The functi on 
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ciocroascs rapidly wit!, the level  M of ciiocrct izat ion up to about 

M - 3 , telling us that most of the value of flexibility can be ob- 

tained through the use of very rough discretization. 

4.6 CONCLUSIONS 

Obviously a good deal more work has to be done before we gain a 

thorough understanding of the effects of quantization on state vari- 

ables and discretization on decision variables.  However, our initial 

results arc quite encouraging as they seem to imply that the common 

technique of quantizing state variables is a highly effective method 

for evaluating and utilizing information.  Similarly, discretizing 

decision variables seems to be a very practical method for evaluating 

flexibility. 
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CHAPTER 5 

APPLICATION OF THE FLEXIBILITY CONCEPT TO DECISION 

MODEL DESIGN AND ANALYSIS 

The flexibility concept and the quadratic results of Chapters 3 

ard 4 enable us to expand a useful technique for decision model design 

and analysis called "proximal analysis." The term proximal analysis 

is short for "approximate sensitivity analysis." 

In Sections 5.1 and 5.2 a philosophy of model design is presented, 

and the usefulness of sensitivity analysis to this process is briefly 

discussed. The expansion of proximal analysis to include the concept 

of flexibility is the subject of Section 5.3. 

5.1 DESIGN OF SIMPLIFIED MODELS 

In previous chapters we repeatedly indicated that a decision maker 

may wish to use a less than complete decision model because of the high 

cost of complete decision analysis. Since there are a large number of 

alternative simplifications, or alternative models, the question arises 

as to how to choose the simplified model that is most appropriate for a 

given resource commitment problem. 

In theory, the problem of choosing between competing models can be 

solved using the formal decision analysis technique. Such an approach 

involves defining a space of decision models, what Smallwood [12] refers 

to as the "metamodel," and then choosing from that space the particular 

model and corresponding decision strategy that yield the highest ex- 

pected utility consistent with the beliefs and preferences of the deci- 

sion maker. The problems associated with such a formulation, however, 

preclude its practical use. 

Instead of using formal analysis, the process of model specifica- 

tion is usually approached in a heuristic manner.  The basic technique 

is to propose a simplified model, using "rules of thumb" based upon ex- 

perience, and then to improve that model until it appears to capture 

adequately the real system's perceived dynamics. 

Therefore, a good portion of the model design process consists of 

what Demski [5, p. 32] refers to as determining the "scanning 
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information"   that  will   Indicate   improvonicnts   that   slioulcl  bo   incorpo- 

tatcd   into   iho model.     Py   testing   the   current   srmplifiod model,   the 

decision  analyst  can  often  generate much of  the  needed  scanning  infor- 

mation.     One of  the most  useful   test   techniques   is   sensitivity analysis. 

5.2    SENSITIVITY ANALYSIS 

In   sensitivity  analysib   the  decision  analyst   tries   to determine   the 

change   in  the model's   selection  of alternative  actions  or expected  util- 

ity   that would  result   fron a  riven  change   in   the model's  assumptions. 

Assumptions   that produce  small   changes  are apparently  relatively  insig- 

nificant,   while  assumptions   that  produce  considerable  changes  are 

likely quite  Significant.     Significant   assumptions  pertaining  to model 

structure   should,   of course,   be  carefully   investigated. 

We  shall   illustrate   the   fundamental  nature  of  ser^itivity analy- 

sis  with  applications   to   the  simplified  analysis  of   information and 

flexibility. 

MfOIMttlON EVALUATION USING SENblTIVITY ANALYSIS 

Suppose  a businessman   is analyzing   the  possibility of expanding 

his product   line.      In  determining  the price he will  charge  for his  new 

product,   he may  wonder  hw   important   it   is   for him   to  consider  the wage 

settlement   in a  labor  dispute    that    is  currently  being negotiated by 

one  of his   competitors.     In other words,   our businessman   is wondering 

whether  the wages   that  will  be paid  by his  competitor will be an   im- 

portant  consideration   in  planning his  own pricing  strategy. 

In general,   sensitivity analysis may be  used  to  estimate  the 

value of explicitly   including  the outcome of uncertain  information 

variables   into a model.     Two basic  sensitivity calculations are neces- 

sary  for   the  analysis.     The   first   is  referred   to  as  open-loop  sensitiv- 

ity analysis,   and   it  addresses   the  question of how  the   value 

resulting   from a   fixed  decision  setting  varies  with  changes   In  state 

variable   settings.     To   Illustrate,   consider   the  basic   decision model 

of Fig.   1.4.     Suppose   that   the  decision   vector   Is   set   to   Its  optimum, 

d*  ,  and   that  the   ith  slate  variable     s.     is  set  to a  fixed value    s 1 i 
Under  these  conditions,   the  expected  payoff of   the   resultant   lottery 

Is  given  by 
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<-v|s ,d*,e-. -    f ^[s,d*,e> fs|s. ,R] .        (5.2.1) 
1       _Sf;SJ I 

Ranging s. over some specific set of values indicates how the value 

function varies with the v^lue of s. . Howard [8] refers to this as 

open-loop sensitivity analysis because the decision is not altered as 

the information on the state variable is introduced. 

The second calculation is referred to as closed-loop sensitivity 

analysis.  It addresses the question of how the maximum value of the 

value function behaves as a function of state variable settings.  If 

the itn state variable has value s. , the maximum expected value of 

the lottery is 

<v|s ,_d*(s ),P> - max     T <vLs,d,e> fs js. ,6} .    (5.2.2) 
deD j-rS " x 

Varying    s       shows how  the maximum payoff value  varies with the  set- 

ting of the  ith state variable. 

Using  the open-and closed-loop sensitivities  the decision analyst 

may estimate  the value   to  the decision maker of knowing  the outcome  of 

s.   .    Taking  the difference between the  two quantities we obtain the 

value of stochastic compensation; 

Ks^)  - ^js-.d^s^.O -  ^Is^.J*.^ . (5.2.3) 

The value of stochastic  compensation is  the maximum amount that an 

expected value decision maker would be willing  to pay in an uncertain 

environment  to  fix the i1'   state variable at    s.   .     Therefore,  taking 

the expectation of (5.2.3) with respect to the distribution of    s.   , 

<l|e> -     f I(s )   fs.lP,]   , (5.2.4) 
B! 

we obtain the maximum amount the decision maker would pay for the reve- 

lation of    s.    before  setting his decision vector. 

FLEXIBILITY EVALUATION USING SENSITIVITY ANALYSIS 

The same  ideas are  involved in  the analysis of whether to include 
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a spocifu- decision variable direcLly in tho moclel.  Suppose we wish 

to estimate the effect of obtaining flexibility on decision variable 

d  .  If we calculate the partially closed-loop sensitivity in which 

all decision variables but d.  arc set to nominal or fixed optimal 

values  (d-d )* while  d.  is allowed to vary optimally with _s , wc 

get 

■A'Ls, (d-d V.v,d-^),? ■ max v[s,(d-d.)*,d.,'" . .     (5.2.5) 

Subtracting the open-loop sensitivity to the state vector _s , we ob- 

tain an expression for the value of partial stochastic compensation. 

This value is the maximum amount an expected value decision maker 

would be willing to oay to set the j1'" decision variable to compen- 

sate for given state variable outcomes  s : 

F(s) - Vl»,(d-d J^df^t^- <v[8td*,e (5.2.6) 

Taking   the  expectation  over     s   , 

^"IF I     F(s)   fs|P,]   , (5.2.7) 

we obtain the value to the decision maker of retaining flexibility on 

d  , givfn complete information on the state variables. 

APPROXIMATIONS IN SENSITIVITY ANALYSIS 

The above analysis has illustrated that the value of information 

computation and the value of flexibility computation can be interpreted 

as calculations of expected compensation.  The compensation function is 

defined as the difference between the model's open- and closed-loop 

sensitivities. 

In the practical application oi  sensitivity analysis, approximate 

techniques are usually employed in the calculation of the open- and 

closed-loop sensitivities.  Such approximations make it possible for 

the decision analyst to obtain, at relatively low cost, approximations 

to the value of information given flexibility.  These,in turn, provide 

indications of the benefits of various information system and model 

.90. 



^•■«prMHBIi    IN    IM   11 

design proposals and, therefore, help to guide the analyst in his model 

development.  Some practical simplificatü.ns, including the ceteris 

paribus fashion in which sensitivity analysis is usually conducted, are 

illustrated in the ollowing section. 

5.3 PROXIMAL ANALYSIS 

A major problem associated with a complex decision model is the 

evaluation of the value lottery v(s,d),  s , S ,  d , T) .  In many 

practical cases the number of variables is so large that f.he costs of 

direct evaluation and even computer simulation become prohibitive. 

Calculation of stochastic compensation functions in this case is not 

possible. 

A method which is often useful for dealing with such problems, 

termed "proximal decision analysis," has been developed by Howard [8]. 

Rice [11] has shown that for the evaluation of complete information 

given complete flexibility the conditions of the proximal model allow 

deterministic compensation functions to be substituted for stochastic 

compensation functions.  We shall show how this technique may be ex- 

panded to provide an estimation of the value of incomplete information 

and flexibility. 

In its basic fonm proximal analysis assumes a model of the form 

of Fig. 1.4 with unconstrained continuous decision variables, a smooth 

value function, and a utility function that is approximately exponen- 

tial with a small or moderate decree of risk aversion.  Following 

Howard and Rice we imagine that the decision analysis rvcie has yielded 

the following data.  ..rst, we suppose that the deterministic phase has 

resulted in a dcteministic model relating outcome value to state and 

decision variable settings.  A probabilistic phase is assumed to have 

supplied us with a vector of mean values 1 and a matrix of covari- 

ances among the state variables.  Howard [8, p. 5111 suggests a proce- 

dure for obtaining this data. 

Let 

max  v(s,d; 
d 

(5.3.1) 

denote  the optimum deterministic  decision  setting and  suppose  that 
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Next we shall calculate the partially closed-loop sensitivity in 

which the only decision variables that may b' adjusted are those d. 

with j  in an index set J .  Putting  /^= and .'d-    equal to zero in 

(5.3.2), 

Av *ifc, +1 *&!*, * «&J^JH «>jj4ij •    (5.3.9) 

Setting the gradient ^ i th respect to d. equal to z.^ro, we get an ex- 

prossion showing how the flexible decision variables are optimally ad- 

justed in response to chtngAI in state variables: 

-1 • 1*        rt" ' T1 

AI " -Q.ijrij^i (5.3.10) 

Substituting this expression into (5.3.9) gives the partially closed- 

loop sensitivity of oi-tcome value to state variable changes: 

»cl  - ^  ♦ i ^;WII^I - i ^Trf]1/^   . (5.3.11) 

open-loop  sensitivity effect  of compensation 

Wc  see,   in analogy with  Howard's  results   [8,  Equation  7.4],   that  the 

partially closed-loop  sensitivity  is  composed of  terms  representing 

the  open-loop  sensitivity  to  state  variables plus   terms   that  show the 

effect  of compensation. 

THE EXPECTED VALUE OF DETERMINISTIC COMPENSATION 

Subtracting  (5.3.8)   from (5.3.11) we get an expression  for the 

value of deterministic  compensation  for  the quadratic  decision problem*. 

comp    -I 2   ^ITIJQJJTIJ^I (5.3.12) 

The  value of deterministic  compensation  tells  us  what  it would be worth 

to   Lhe  decision maker   in  i completely deterministic  environment  to ad- 

just decision variables  in response to changes  in state variables. 

The expected value  of deterministic  compensation  is  obtained by 

taking  the expectation of  (5.3.12)  with respect   to  the marginal 
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probability distribution of sT: 

(5.3.13) 

A comparison with (3.2.39) shows that (5.3.13) is exactly the expected 

value of perfect information on  s-  given perfect flexibility on d 

for an expected value decision maker with a quadratic value function if 

any r»f the conditions of Corollary 2 are satisfied. 

Now suppose that all state variables arc adjusted in the sensitiv- 

ity calculations.  The compensation function becomes 

f 

v (As)  -   's'T    Q'V     S (5.3.U) 

If  the   function    £(^1^^.)     is available,   the  compound  function 

,W1<*l*l)l  •1<4|,|46l)VijIijI<«llX) (5-3.15) 

may  be   formed.     Taking  the expectation of  (5.3.15)   yields 

^comp^ ■ " E[E<^i^I)TNJQjiTNJE(43l^I>l   - (5-3-16) 

which  is   the expected  value of perfect  information on    ^    given per- 

fect   flexibility ^n    dj     for an expected value  decision maker with a 

quadratic  value  function  if any of  the conditions  of Corollary  1  are 

satisfied. 

APPROXIMATING THE 'JVPIGPF WITH  SENSITIVITY ANALYSIS 

Howard   [8, Appendix B]  gi\ is  a method  for numerically evaluating 

J?   ,  W  ,  T   , Q  ,  and  various  conditional and unconditional covariance 

matrices.     Hence,   the  proximal model  and   the  theorem and  corollaries 

of Chapter  3 provide  a means   for obtaining an approximation  to  the ex- 

pected value of  information given   flexibility  for   the  risk sensitive 

decision maker with a  smooth value   function. 

The above  results,  however,   show  that under  certain conditions a 

simpler procedure may  be  applied.     For  the purpose  of  illustration, 
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assume  that  the value   function  for  the decision model  contains   two 

state variables and  two decision variables.     We wish  to  estimate   the 

value of perfect  information on     s,     given perfect  flexibility on    d9   . 

For  the  first  calculation we  shall   ignore  the effect   that  kne fledge of 

s,     has on  the estimation  of     s     .     The procedure  consists  of 

1. evaluating deterministic  open-loop  sensitivity  to 

changes   in  the  observable  state variable     s.    , 

2. evaluating deterministic partially closed-loop 

sensitivity  (  d.     continuously optimized)   to  changes 

in     ^   , 

3. calculating  the  differonco   in  these  two  functions, 

VcomP
(:sl)   ' 

A.  determining the expectation of v 
comp 

If knowledge of    s,      impacts  the  decision  through  its  effect on 

the estimation of    I«  ,   this may be  included  in  the  approximation using 

the  following procedure: 

1.     evaluate deterministic  open-loop  joint sensitivity 

to changes   in    •*     and     s-   , 

2      evaluate  deterministic partially closed-loop  joint 

sensitivity  (  d„     continuously optimized)   to  changes 

in  s,     and    s9   , 

3. calculate  the difference   in  these  two  functions, 

comp       1       2 

4. determine    E(fs^\ 's.)   ,   the conditional mean of     £.s0 

as  a  function of     ^s,   , 

5. determine  tb«  expected  value  of    v [/\s, ,E( As0 I AS, ) ]   . 
comp  1    zi  i 

Implementation of this procedure could be facilitated by approximating 

joint sensitivities by quadratic functions. A good approximation may 

be expected provided that ElLE( AS21 ASj^) ] ■ 0 ; that is, the prior ex- 

pectation is a zero shift in the mean of the unobservable state variable, 
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CHAPTER  6 

SUMMARY,  CONCLUSIONS,   AND SUGGESTIONS  FOR  FURTHER  RESEARCH 

6.1    SUMMARY AND CONCLUSIONS 

The objective of  the   thesis  has been  to  demonstrate   thit  the  con- 

cept of decision  flexibility may bo  usefully  incorporated  into  the 

decision analysis   framework.     The  demonstration has  been bas^d on one 

possible  definition of  flexibility—  the mathematically precise  defini- 

tion  that was presented  in Chapter  1. 

We  feel confident that we have achieved at least some measure of 

success.     In Chapter  1,  application  to  the classical problem of choos- 

ing plant   flexibility  indicated  that our definition provides  an analytic 

representation of  flexibility  that  seems  to preserve  successfully  in- 

tuitive notions.     A  logical  and  consistent means  for  calculating  the 

value of any combination  of  information and  flexibility was presented 

in Chapter  2.     By applying  the  technique    to a sample  decision problem, 

we  demonstrated  that  the concept might be useful  for generating insights 

into problem structur -.     It was  shown  that  just as   the  standard value 

of  information calculation  could  be  used  to evaluate   information-gather- 

ing  schemes,   the value  of  information  given  flexibility  could be used 

to evaluate  information distribution and utilization  systems. 

An exoloration  into   the value  of  information given   flexibility  for 

quadratic  decision problems was undertaken in Chapter  3.     We obtained a 

closed-fonn expression  for  the value of perfect  information on a subset 

of state variables given perfect   flexibility on a  subset of decision 

variables.     Alternativclv,   this  icsult may be  regarded  as   the  solution 

to  the  two-stage quadratic  decision problem in which  some  decisions must 

be made now,  while others  may be  delayed until after  the   receipt of some 

information.     The  relation of  the  va.ue  of  joint  information  to  the  sum 

of  individual  values of  information was  clarified  by  the  quadratic anal- 

ysis.     It wac  shown  thau   the   first order additivity or non-additivity of 

the value of  information  is  determined  by state variable  correlation. 

To a  first order approximation,   if  two pieces of  information are un- 

correlated.   then  the value  of obtaining  that  information  simultaneously 

equals  the  sum of  the values  of receiving each item of  information by 
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given  the  observable  state variables    _sT   .     The approximation  to  the 

expected value  of  information given   flexibility  is obtained by  inte- 

grating  this  combined  function over  the prior distribution of  the ob- 

servable  state variables. 

6 . 2     SUGGESTIONS  FOR FURTHER RESEARCt, 

In  the course of our work a number of what  appear  to  be highly 

productive  avenues   for research were  identified.     Unfortunately,  be- 

cause of  time  constraints  these  avenues were only briefly explored. 

We mention here   two main 2ieas  where  we   feel additional   investigation 

would prove highly  fruitful. 

Our definition of  flexibility has been  shown  to provide  insight 

and  understanding  into  several problems.     Application of our defini- 

tion   (or  similar definitions  of decision  flexibility)   to  other  common 

decision problems would  likely provide  similar problem insights.     Con- 

sider,   for example,  an analysis  of  flexibility  in  the problem of  li- 

quidity preference.     Results night   indicate problem characteristics 

that  determine   the  logical  quantity of  resources   to be held  in reserve 

for   the purpose  of meeting unexpected  opportunities or  requirements. 

Such  results would prove highly useful.     For  this reason,  we   feel  that 

exploration  into  the concept of decision  flexibility should be  con- 

tinued. 

Secondly,   there  seems   to be potential   for  the analysis  of the 

economic  costs of discretization and quantisation.    Analytic   techniques 

for  investigating  the  distortion  caused by data quantization are 

nearly as plentiful as  the  use  of quantized data systems.     We have  shown 

that  such data distortion can be evaluated in precise economic   terms. 

Such a result provides  the  logical means   for  judging a quantizing 

scheme and an objective function  for   the design of optimal  information 

reportlnp  and  data processing  systems. 
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APPENDIX A 

SUMMARY OF BASIC NOTATION 

■ (■|»*..»a||) ■ • random voctor describing tho state of Nature. 

« th? set of conceivable s ates ■ of Nature,  Uncertainty about 

I  is expressed by a probability distribution defined on S . 

1 a state of experience or information on w'.iich probability as- 

sifinments are made, 

: tbu experience level prior to the analysis. 

• the probability density function describing the uncertainty in 

s     when the state of information is  S . 

»    ! Jf_s,Sl ■ the expected value of s  given S 

(d^»...,dB) ■ a vector of decision or actio-. variables over 

which a decision maker has direct control. 

the vector composed of all decision variables but d 

the set of conceivable actions. 

a set of possible information signals  y . 

an information structure (a function from S to Y ) which pro- 

duces the information signal  y =- -(s) when _s  is the true 

state of Nature. 

^ l''-''^ * an information distribution structure (a vector 

of functions defined on Y ).  » (y)  is the information made 

available for the setting of the jth decision variable when 

the information signal is  y . 

(^O) ,• . . ,dm(-)) - a decision strategy (a function of y , 

T(y) , or the level of experience 3 , whose domain is D ), 

If danger of confusion is minimal the function may be abbrev- 

iated ^J . 

the set of feasible decision strategies. 
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v »a value function (a real valuod function defined on S x R ). 

The monetary value to the decision maker if he chooses action 

d  and the state of Nature Ls _s , is  v(s,d) . 

u   «a utility function (a real valued function defined on R ). 

The utility to the decision maker of the monetary value  v 

is  u(v) 

■ a profit function. 

M   * fl,...,n) ■» the set of state variable indices. 

M   = jl.-.-.m! » the set of decision variable Indices. 

1   * a  subset of N denoting the set of indices corresponding to 

those state variables on which information is available. "l 

denotes the complement of  I . 

J   = a subset of M denoting the set of indices of decirion vari- 

ables for which flexibility is available.  J  denotes the com- 

plement of J . 

1i:    - the matrix  [tyJij I W of thoäe elements  t.,  of the matrix 

T such that k  is in I and  1  is in J . 

•j - the vector of state variables on v;hich perfect information is 

available. 

X   ■ E^U^) ■ the conditional mean of _s given perfect information 

on .sT • 

dj  »= the vector of decision variables for which perfect flexibility 

is available. 

C-1F-J " tlie  i'iformation structure for which perfect information is 

available OP J>  and perfect flexibility exists on d  . 

V 
Hll'Sj " the value  of the information structure CsTFd 
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APPENDIX B 

THE ENTREPRENEUR'S PRICE-QUANTITY DECISION 

We present here the solution to the entrepreneur's problem of 

Section 2.2. An entrepreneur plans to produce a new product and wishes 

to decide upon a price and quantity that will maximize his expected 

profits.  His problem would not be too difficult if it were not for 

uncertainty, but he recognizes thr*" he is uncertain about what his 

costs will be and about what the demand for his product will be. 

We suppose that our entrepreneur feels that the demand for his 

product will be related to the price he charges according to 

x - - - b - e , (B.l) 
P 

where 

x  ■ demand (in thousands of units) , 

p  * price per unit (in thousands of dollars) , 

e  »a random variable uniformly distributed from zero to one , 

a,b « constants . 

Suppose, further, that he feels his costs c per unit are well repre- 

sented by a random variable uniformly distributed between zero and 

one: 

c = total cost per unit (in thousands of dollars) . 

We assume the random variables e and c are independently distributed, 

The demand curve (B.l) and the probability dersity function for the de- 

mand parameter e are illustrated in Fig. 2.4.  The probability den- 

sity function for the cost variable c  is illuccrated in Fig. 2.3. 

The objective of our analysis is to determine our entrepreneur's 

optimal price and quantity and the corresponding expected net profit 

under various perfect information given perfect flexibility structures. 

Let 

q ■ quantity of product produced (in thousands of units) , 

v ■ net profit (in millions of dollars) . 
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Then, 

rp(-  -  b -   e)  -   cq   ,     if   --b-e  < q 
v(p,q,c.e)   =   |      P P 

(P  -   >-;   q   , if    —b-e    ■ q 
P 

(B.2) 

Suppose   first   that  our entrepreneur  seeks  no  further   information. 

As  a   function of price  and  quantity  his  expected  ne"  profit  will   be 

v)p.q,c> =        f v^q.ce) r«iei fc 
ck     e' 

Pi 

= a -1^ - (b + -L + i)p + ba + (:l. i)q . pbq . m! _ ^ 3) 

Differentiating and setting the result equal to zero we obtain expres- 

sions for the optimal price and quantity, 

>* ■ 
4a-1 
8b+4 

(2a-l) (2M-1) 
4a-1 - b (B.4) 

which yield    a maximal  expected profit of 

<V|«>-    vlp*,q*,e.= •♦1-4   N/(2bfl)(4a-ir     . 

To be specific, let us suppose that 

(B.5) 

a - 2.25   ,     b =  .5   .     Then 

P* -  1 -  $1,000   ,       q* -   1.25 =  1,250 units (B.6) 

The expected demand is 

«I« ■ ="^ " b " ■«•« • -   l-25 - 1,250 unitl , (B.7) 

and   the  expected net profit   is 

<VJe> ■   .5  ■   $500,000 (B.8) 

We  shall now proceed   to calculate  the  optimal  decision  strategies, 

the  expected payoffs,  and  the  values  of  the  several   information- 
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distribution structures in which perfect information is available on 

various state variables and flexibility exists on various decision 

variables.  In all there are nine possible distinct combinations of 

state variable information and decision variable flexibility.  Unless 

otherwise noted, in each of these cases the optimal decision strategy 

is found by differentiation.  By (2.1.7), the values of the information- 

flexibility structures (the entries of Table 2.1) will be the differ- 

ences between the expected profit under the structures and Eq. (B.7). 

Perfect Information on c and e -- Perfect Flexibility on p and q 

If costs and demand are revealed to the entrepreneur before he 

sets his price and quantity, then, obviously, he can expect to increase 

his profits.  In such a situation the maximal expected profit 

<v|CceFpq,e> -  I \    max v(p,q,c,e) felP] \c\t] 

b  1  8  1/2^,.,.3/2 .3/2, 
-=a + -2 + --ga  1 (b+1)  - b  J (B.9) 

is  obtained by setting 

/ ca 
b+e '••tW b -  e 

(assuming  that    a  > b + e     so  that    p* -> c  ).     With    a 

b -   .5   ,     ^ICceFpq,t    =  $771,915   . 

2.25   , 

(B.10) 

Perfect  Information on    c    --  Perfect  Flexibility on    p    and    q 

Should  costs alone be  revealed prior  to  the  setting of    p    and    q, 

<v|CcFpq,e. = max     f    v(p,q,c,e)   [el?,]   [c J6l 
6      p,q e- 

b 
2 

U: i + -^ -    >/2b+l        !   v 2.ir-r- 
0' 

-I /2b+r 1 (1-a) JlaTT + a  (si-T 1-a 
a 

(B.U) 
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is  attained with 

p-.- 
(2a-Oc 

2b+l 
q* = (a-c) 

V 
/    2b»l 

(2«-c)c 
(B.12) 

With  the  example  values    a ■  2.25   ,     b ■  .5  ,      v|CcFpq,f •=  $639,416. 

Perfect  Information on    e     --   Perfect  Flexibility on    p     and     q 

Should   the  demand parameter    e     be  revealed prior  to   the  setting 

of    p     and     q   , 

•-v jCefpq,e ■ - max f v(P,q,c.e)    fcjCl   [eje] 
e'     p,q     c 

1/2 
+  b+^_18al_   [(bfl) 3/2    ,3/. 

-   b (B.13) 

and   the optimal  decision  strategy   is 

P"  =\/l(^) I* =   /2a(b-fe)     -  b (B.U) 

With     a  =   2.25   ,     b • .5   ,      'v jCeFpq ,P. ■ •=   $651,924   . 

Perfect   Information on    c     anci     g     --   Perfect  Flexibility on    p 

If perfect   information on  cost:,   and  demand   is  used  only   for   the 

setting of price , 

^vjCceFp^ - - max j     max  v(p ,q ,c ,e)   ielC1;   [c|el 
q     c"     e*        p 

max   (- | ♦ «q   log ii^i) (B.15) 

The optimal pricing strategy sets  p  at the highest value that will 

sell out the entire production quantity. 

p" = q+b+e 
(B.16) 

With  the parameter values    a =  2.25   ,     b ■   .5   ,   the maximizing    q     in 
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(B.15)   is  approximately    q* ■  1.0947   ,  and  this  yields an  expected 

profit of      vjCceFp.P*  $651,639   . 

Unlike   the  othar optimal  strategies,   if our entrepreneur chooses 

this   information-flexibility  structure,   it  is  conceivable   that he will 

lose money.'     In  the worst possible  outcome, demand will  be at  its  lowest 

(e ■  1)  and costs will  be at  their highest  (c >* 1)   conceivable values. 

The pricing strategy  (B.16)  puts    p-'> ■  $867.15:     our entrepreneur 

will   lose  $132.85  on each of  the   1.095  units he  sells. 

Perfect  Information on    c    and    e    --  Perfect Flexibility on    q 

If perfect   information on  costs  and  demand  is  used only  for  the 

setting of quantity, 

<v|CceFq,e> ■ max     (        j max v(p,q,c,e)   [tjft]   [cjC] 
p     c"     •      q 

i + -^ + ) -   x/a(2b+l)     , 
2       4 

(B.17) 

2bfl 
,       q* =   yS(2b+l)     -   b -  e   . (B.18) 

It   is  assumed  in  (B.17)  and  (B.18)   that    a  > 2b+l     so  that costs may 

not  exceed    p*  .     With  the values    a ■ 2.25   ,    b ■   .5   ,      A/|CceFq,e>« 

$628,680   . 

Perfect   Information on    c     --   Perfect  Flexibility on    p 

Suppose our entrepreneur will  have perfect   information on costs but 

uses   that   information only   in  the  setting of his price.     Then, 

-v ICcFp,e ■ ■ max     "max      \     v(p,q,c,e)   fe |P,1   [cjft] 
q     r       p     a' 

b       1 + -r - i   y(2bfl)(4a.l)     , 

)* -. 
f4a-l 
8b+4 q* » (2a-1) 

2bfl 
Aa-1 

(B.19) 

(B.20) 
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q+b+i 
(B.24) 

These are   th«  same  results we obtained  iii  the  calculations under  the 

structure    CceFp   .     We conclude,   therefore,   that of the knowledge    c   ,  e   , 

it  is  only  the  knowledge of    e     that has  economic  value. 

Perfect  Information on    e    --  Perfect Flexibility on    q 

Lastly,  we  suppose  that our  entrepreneur will  receive perfect 

information on  demand but may use   that  information only  for his  set- 

ting of quantity.     Then, 

Jv|CeFq,e> - max max     i     v(p,q,c,e)   fde]   felgl 
p     e^       q     ^ 

1 

- a +| + i - /«CZbfl)  , (B.25) 

p* =. 2b+l q* - ya(2bfl)  - b - e (B.26) 

This corresprnds to (B.17) and (B.18). As far as setting quantity is 

concerned, the economic value of knowledge of costs and demand is 

achieved through knowledge of demand alone. 
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